
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Abstract Data Types

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 1 / 10

http://cs.anu.edu.au/courses/comp6700/lectures.html#A6


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 (Abstract) Data Types and Data Structures
2 Interfaces are ADTs
3 Interfaces of JFC (recap of the container hierarchy)
4 Implementation Classes
5 Generic Algorithms

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 2 / 10



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Data types and data structures

To group multiple elements into a single unit, known as a collection or container, to store and
retrieve the elements, and manipulate this group as a whole through a small set of operations,
defined in its interface, is a common computational problem. The most basic examples of such
collection types are arrays. Classes like Vector, and Hashtable are separate (raw) collection types
(they predate JCF). With generics, collection types are vastly expanded and organised into the
Java Collections Framework, endowed with the architecture for representing and manipulating its
constituents. JCF tries to emulate the famous C++ Standard Template Library. The framework
resides in java.util package. It has the following components:

Interfaces: These are abstract data types that represent interfaces to the framework’s
collections. Interfaces allow collections to be manipulated independently of the details of
their representation. Interfaces generally form a hierarchy.
Implementations: These are the concrete implementations of the collection interfaces. In
essence, they are reusable data structures (DS).
Algorithms: These are the methods that perform useful computations, such as searching and
sorting, on objects that implement collection interfaces. An algorithm is generic if it can be
used on many different implementations of the appropriate collection interface. The use of
bounded wild cards allows to constraint possible type values to ensure support of necessary
operations. Java can implement generic algorithms because it can define parameterised types
(it’s a third benefit of having them in the language; remember the first two?). Generic
algorithms provide reusable functionality.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 3 / 10



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Quotes from the Masters

“Bad programmers worry about the code. Good programmers worry about data structures
and their relationships.” [Linus Torvalds]
“Smart data structures and dumb code works a lot better than the other way around.” [Eric
S. Raymond]

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 4 / 10



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collection Interfaces

Collection Metaphors

Kent Beck (a well known software expert, the co-author of JUnit, and one of the Extreme
Programming’s pioneers) remarks, in his recent book “Implementation Patterns”, that collections
should be regarded as the first-class language construct (alongside with variables), because they
are multi-valued variables, and because their cardinality (“many”, meaning two and more), is, in
fact, complimentary to other two fundamental mathematical cardinalities: zero (no field) and one
(a usual field variable). The collection concept combines in itself three metaphors: it’s an object,
which can hold multiple values at the same time, and has properties of a set.

Collections which you can encounter in a program can be classified according to their interface:

Array — simplest, most rigid, fixed size, and fastest
Iterable —– most basic interface to use a collection for iteration and nothing else
Collection (proper) — allows adding, removing and testing for elements
List — collection whose elements are ordered and accessible by their location in the collection
Set — a collection with no duplicates
SortedSet — an ordered collection which contains no duplicates
Map — a collection where elements are stored and retrieved not by an index, but via a key

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 5 / 10



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collections

To put it simply — Collection objects store other objects (eg, ArrayList). We shall:

1 re-enforce the OO idea of a separation between the interface to a collection and the
implementation (DS) of that collection

2 introduce (or review, in the case of array) new

Collection Data Types Data Structures

lists
queues
stacks
maps (dictionaries)

arrays
linked lists
hash tables
binary trees

3 describe how collections are defined in Java Collections Framework

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 6 / 10



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collection interface

Before considering other implementations of the BookList.java interface, let us describe its basic
operations. These basic operations (alongside with the bulk operations) form the Collection<E>
interface. The BookList interface is therefore a particular example of Collection<Book>. The
linked list implementation of three of its methods are illustrated:

int size() boolean isEmpty() boolean contains(Book b)

String toString() Book get(int p) Iterator<Book> iterator()

boolean add(Book b) boolean remove(Book b) void insert(Book b, int p)

All implementations of iterator() returns the implementation of Iterator given by the class
BookListIterator.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 7 / 10

http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookList.java
http://cs.anu.edu.au/courses/comp6700//examples/collections/new_books/BookListIterator.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementing with own Data Structures
The example of BookList.java defines an interface for the Library program for filing a collection of
Book objects, processing and printing them. Its two implementations use different DS for internal
storing collection elements, but their usage is exactly the same (polymorphism).

1 The BookListWithLL.java implementation uses a linked list. It is an example of a dynamic
DS (size changes during runtime). Each node contains a Book object and a link to the next
node. Types like this are self-referential — they contain a reference to a same type object.
There is no limit on the length. Links can be broken and reconnected: The cost is in
traversing the list to find the place i where to break/reconnect, O(i).

2 The second implementation BookListWithArray.java uses an array DS, which can provide
random access to a its elements, O(1). The implementation is simpler.

We have implemented the BookList interface from scratch. It is more practical to use data
structures provided by the JFC, as we discuss later.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 8 / 10

http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookList.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookListWithLL.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookListWithArray.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collections: summary of types

The interfaces of the Collections Framework and some of their implementations:

Note The above figure doesn’t show that LinkedList also implements Deque which, in turn,
extends Queue (this changes to JFC have been made after the above picture was created).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 9 / 10



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 7.1–7.4
Oracle’s Java Tutorial First Three Sections in Collections Chapter
The Collections Chapter (like others trails from the Tutorial) is available as an epub eBook

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types May 2017 10 / 10

http://docs.oracle.com/javase/tutorial/collections/index.html
http://www.oracle.com/technetwork/java/javase/java-tutorial-downloads-2005894.html

