
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Implementation of ADT

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 1 / 22

http://cs.anu.edu.au/courses/comp6700/lectures.html#A7


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Implementing an ADT
2 List ADT: array based Implementation
3 List ADT: Linked List based Implementation:

Node with an element
Link of nodes (“chain”, linked list)

4 Implementing via Inheritance from standard API: Adapters

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 2 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

List ADT Operations

Recap from the A1 lecture (the Book class has two “expected” fields: String title and
boolean isChildren), the linked list based implementation of some operations:

boolean add(Book b) boolean remove(Book b) void insert(Book b, int p)

The iterator() method returns an implementation of Iterator interface given by the class
BookListIterator.java. More on an iterator is in the next A-lecture, A2.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 3 / 22

http://cs.anu.edu.au/courses/comp6700/lectures/A1.pdf
http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookListIterator.java
http://cs.anu.edu.au/courses/comp6700/lectures/A2.pdf


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementing with own Data Structures
The example of BookList.java defines an interface for the Library program for filing a collection of
Book objects, processing and printing them. Its two implementations use different DS for internal
storing collection elements, but their usage is exactly the same (polymorphism).

1 The BookListWithLL.java implementation uses a linked list. It is an example of a dynamic
DS (size changes during runtime). Each node contains a Book object and a link to the next
node. Types like this are self-referential — they contain a reference to a same type object.
There is no limit on the length. Links can be broken and reconnected: The cost is in
traversing the list to find the place i where to break/reconnect, O(i).

1 The second implementation BookListWithArray.java uses an array DS, which can provide
random access to a its elements, O(1). The implementation of add and insert requires
copying a part of the underlying array DS, O(n − i).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 4 / 22

http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookList.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookListWithLL.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookListWithArray.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Juche: Generic In-house Implementation
Forget Books, we can do it with a type parameter, and we can define our algorithms also
generically (independent of a concrete implementation):

ArrayIterator.java — generic array based implementation of Iterator interface (could be
defined as inner class in ListWithArray)
BadOperation.java — an exception class to signify an illegal operation
Book.java — a concrete type to be used in the client Library
Iterator.java — one’s own iterator (to make The State Department bilious)
Library.java — a client class which can choose either array based, or linked list based
implementation of MyList as a container of Book objects
ListIterator.java — generic linked list based implementation of Iterator interface
ListWithArray.java — an array based implementation of MyList
ListWithLL.java — a linked list based implementation of MyList
MyList.java — a generic interface of a list container type
MyUtilities.java — a utility class for generic methods on a container type whose interface is
defined in MyList (think of it as an “in-house” version of java.util.Arrays or
java.util.Collections); it has only two methods, min(list,lo,ho) and sort(source,
target) to work with MyList objects (ie, their implementation uses only MyList interface
methods); the sort-method implementation uses the Selection Sort algorithm
Node.java — a generic class used in linked list based implementations

Note: juche is the North Korean principle of self-reliance, an ultimate form of a state
independence.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 5 / 22

http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/ArrayIterator.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/BadOperation.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/Book.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/Iterator.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/Library.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/ListIterator.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/ListWithArray.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/ListWithLL.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/MyList.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/MyUtilities.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/juche/Node.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementations of Collection interface via Inheritance
We have implemented the BookList interface from scratch. It is more practical to use data
structures provided by the Java Collection Framework — for a List type ADT (not the interface
java.util.List!), one can, however, use java.util.ArrayList and java.util.LinkedList
which use exaclty the same DS, array and linked list, correspondingly.

When a standard library offers an effective implementation of a collection type, it is more prudent
to use it for implementing your own interface. We discuss two ways to use ArrayList collection
class for implementation of our BookList interface. Two approaches are possible.

One approach is very convenient and allows a minimum of work because it uses

Inheritance

Make the class to implement BookList and inherit ArrayList, thus making the implementation
class of the ArrayList type. In software design this is called “Is-A” relationship (between the
classes) — by the virtue of inheritance BookListIsALjava is ArrayList. The trade-offs:

(+) Less work if the interfaces of BookList and ArrayList are similar. Provides access to
protected members of the parent class. Allows to override the parent methods.
(-) Too rigid construction which does not allow future extension of the BookList type (“no
can do multiple inheritance”). Inheritance represents a strong coupling between classes, and
should be avoided when there are alternatives. Inheritance constrains the object type, which
can be undesirable for the client. The derived class can become fragile if the parent class
includes undocumented “self-use”.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 6 / 22

http://cs.anu.edu.au/courses/comp6700//examples/collections/new_books/BookListIsAL.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementations of Collection interface via Composition

Another approach, however, is often a better choice — it’s based on

Composition

Compose the class which implements BookList with a field of the ArrayList object. In software
design this is called “Has-A” relationship — by the virtue of composition (aka containment),
BookListHasAL.java has an instance of the ArrayList class among its fields. The trade-offs:

(+) Flexibility without affecting the client code (one can change into “having” a different
class of the same type, or even a different type).
(-) Suffers from the SELF problem: the composed (aka wrapper) class is not suited for use
in callback frameworks, where objects pass self-references to other objects for later
invocations. Because the wrapped object does not know its wrapper, it passes the reference
to itself (this), and callbacks do not find the wrapper.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 7 / 22

http://cs.anu.edu.au/courses/comp6700//examples/collections/new_books/BookListHasAL.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stacks

Queues and stacks are very popular interfaces. Both are widely used in systems level
programming (for managing memory and processes) as well as in other applications.

A Stack<E> is a “last in first out” (LIFO) collection type which can be implemented by adding
(with a push method) and extracting (with a pop method) from the head of a list. The interface:

Stack class in Java Collections Framework has slightly different interface. It extends Vector class
to implement with operations which allow Vector to be treated as a stack. Java regards Stack (as
well as Vector) as a legacy class (on the way out), and suggests to use ArrayList for
implementing the Stack interface in applications. (What could be the reason for such policy?)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Queues

A Queue<E> is a “first in first out” (FIFO) type which can be implemented by adding objects
(with an enqueue method) to the head of a list and by extracting them (with a dequeue method)
from its tail. The interface:

In JCF, Queue interface has slightly different names for the above operations, plus additional
operations which allow to implement this interface into a stack, as well as to have a specific
ordering (defined by the constructor with Comparator parameter), for instance, in the
PriorityQueue class.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 9 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lists
The List interface represents an ordered collection with controls where a new element is inserted,
what element the user can access and search (any, given the index). Implementations classes:

ArrayList, a familiar class with the following performance of the main operations:
get(i), set(i, elem), — O(1) (constant)
add(i, elem), remove(i) — O(N − i) (requires recopying of a part of the list)

LinkedList. This is a doubly linked list, or deque, can be traversed both forward and
backward — an element (deque’s node) has two references, to the preceding node and the
following node. The operation performance is complimentary to the ArrayList:

get(i), set(i, elem), — O(i) (needs i steps to get there)
add(i, elem), remove(i) — O(1) (no recopying necessary)

ArrayList is almost always preferable to LinkedList since its operations have better or same
performance. One exception — when the usage involves frequent change in the number of
elements stored inside the list during the run time.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 10 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Set Interface and Its Proper Implementation

Sets a collections which resemble lists, but have two crucial differences:

The can only contain a unique element (no duplicates allowed) or none at all
The have no order like lists

The attempt to use a list-like implementation for a set interface results in very inefficient add
method (which cannot be avoided by using whichever implementation), because its behaviour
involves a check on whether the added element is (is not) already present, thus requiring call to
contains, which is bound to have O(N) performance.

Therefore, a proper implementation of a set interface requires first establishing a more
sophisticated structure which would make the “look-up” operation faster (scale slower than
O(N), or not scale at all, O(1)).

The trick which allows to achieve this is a new data structure called a hash table, a jewel of the
computer science.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 11 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Set and SortedSet

The extensions of Collection type which disallow duplicates (identical elements): a repeated
invocation of add(elem) with the same element elem (or such elem1, that elem.equals(elem1)
returns true) returns false, and the collection remains unchanged. Set types, therefore, are sets
in the mathematical sense (some computer scientists call them “bags”). The elements of a set
are unordered. The subtype SortedSet (extension of the Set interface) represents a collection,
whose elements can be compared — they implement Comparable interface. The ordering allows
to introduce additional methods:

Set is implemented by the HashSet class with a hash table as the DS. Content modification (add,
set) and testing (contains) are O(1) operations. SortedSet is implemented by the TreeSet class
with a binary tree as the DS. If the implementation can maintain the balanced tree, the search
and modify operations are O(log2 N). Example — SetTest.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 12 / 22

http://cs.anu.edu.au/courses/comp6700/examples/collections/SetTest.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Map and SortedMap
Unlike all previous types from JCF, the Map family of types does not extends the Collection
interface: their contract is different — to represent not a collection of elements, but a
correspondence between two collections. So, a map contains key/value pairs, with no duplicate
keys (the keys form a set) and at most one value for each key. Map is a model of a mathematical
abstraction called function. The interface Map<K,V> operations are:

The SortedMap extension requires the set of keys be sorted. Methods like firstKey() and
lastKey() are added. The Map interface has two major implementation classes (similar to Set)
— HashMap which uses a hash table DS for the implementation (with similar O(1) performance
for put/get operations), and TreeMap which implements SortedMap in the similar to TreeSet
way (with O(log2 N) efficiency). Example — MapTest.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 13 / 22

http://cs.anu.edu.au/courses/comp6700/examples/collections/MapTest.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collections: summary of types

The interfaces of the Collections Framework and some of their implementations:

Note The above figure doesn’t show that LinkedList also implements Deque which, in turn,
extends Queue (this changes to JFC have been made after the above picture was created).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 14 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementations
Maximum Performance Data Structures used in the implementation

Implementations
Interfaces Hash table Resizable array Tree Linked list
Set HashSet Makes no sense TreeSet Makes no sense
List ? ArrayList

?
LinkedList

Deque ? ArrayDeque
?

LinkedList

Map HashMap Makes no sense TreeMap Makes no sense

Only a few data structures are fundamental; ultimately they represent the layout of memory and
access to it in the computer architecture of the von Neumann machine:

1 resizable arrays — random access linear data structure, used in BookListWithArray.java
2 linked list — sequential access linear data structure, used in BookListWithLL.java
3 binary tree — recursive data structure with two (or more) self-references
4 hash table — hybrid data structure

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 15 / 22

http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookListWithArray.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/new_books/BookListWithLL.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithms: Standard operations

Generic algorithms, which operate on the collection classes are provided as static methods from
Arrays and Collections (not to be confused with Collection interface) classes. The Collections
methods include (method return values and parameters are bounded types, actually; consult the
API)

public static <T> min(Collection c) — returns the smallest element in the collection
(another overloaded version also which accepts a Comparator object)
public static <T> max(Collection coll)
public static Comparator reverseOrder() — returns a Comparator which reverses the
natural ordering of the collection
public static void reverse(List list) —— reverses the order of a list
public static void shuffle(List list) — randomly shuffles a list
public static void fill(List list, E el) — replaces each element of a list with el
public static void copy(List destination, List source)
public static List nCopies(int n, E el) — returns an immutable list that contains n
copies of el
public static void sort(List list) and sort(List list, Comparator c)
public static int binarySearch(List list, K key) — the list must be sorted already
for this method to work

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 16 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithms: examples
Various methods to manipulate arrays (such as sorting and searching) are contained in Arrays
class. When combined with Collections class methods, one can achieve powerful results with just
few lines of code. The following program (from Java Tutorial) prints out its arguments in
alphabetical — natural for Strings — order (another example is Anagram.java):

public class Sort {
public static void main(String[] args) {

List<String> list = Arrays.asList(args);
Collections.sort(list);
System.out.println(list);

}
}

Two examples — a list with 100 elements each initialised to an Integer of value -1 and the
method Array.asList() (used above) returns a list view of the array:

Integer init = new Integer(-1);
List values = new ArrayList(Collections.nCopies(100,init));
Card[] cardDeck = new Card[52];
List cardList = Arrays.asList(cardDeck);

Because cardList is only a view of an underlying array, you can set the values of elements but
you cannot add or remove them. The list view is useful if you want to pass a simple array to
methods of the Collections class.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 17 / 22

http://cs.anu.edu.au/courses/comp6700/examples/collections/Anagrams.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reiterate

Major advantages of using the JCF (repeating the Java Tutorial)

Reduces programming effort by providing useful data structures and algorithms so you don’t
have to write them yourself
Increases performance by providing high-performance implementations of useful data
structures and algorithms. Because the various implementations of each interface are
interchangeable, programs can be easily tuned by switching implementations
Provides interoperability between unrelated APIs by establishing a common language to
pass collections back and forth
Reduces the effort required to learn APIs by eliminating the need to learn multiple ad hoc
collection APIs
Reduces the effort required to design and implement APIs by eliminating the need to
produce ad hoc collections APIs
Fosters software reuse by providing a standard interface for collections and algorithms to
manipulate them

No need to invent a wheel every time, the best (“well rounded”) wheels have been already
invented! Use them.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 18 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Copies and Views
Collections can grow very large and consume large memory.

Same collection object can be used by different clients with different needs in terms of how
data represented by the collection are used (read, modified).

Some clients must be prevented from modifying the data
Some clients must ensure that the data is protected from concurrent access/modification
Some clients may require different interface to the data (eg, when irrelevant data are filtered out to
simplify the use of remaining ones)

Using different variables to stand for the same collection – aliases — does not provide an
acceptable solution (aliasing achieve nothing)
Copying the data for different clients may be too expensive and undesirable (which copy
must be regarded as primary when it comes to data preservation?)
Instead, different views of the same collection object offer the right solution

Views fake the fact that underlying data are shared
Views provide different interface to the data and prescribe different protocol to how the data is used.
Metaphor: interface to Google and similar “global Internet data companies” for normal clients, you!,
and security services, like “FBI” and “CIA”, when they need to get the data on you. The data is one
and the same, but normal clients are not given full access to it, and their ability/efficiency to search
it is impaired, and their ability to modify it is very restricted; not so for the spooks! (Julian Assange)

Views are normally created by calling a static factory method with the underlying collection
object passed as a parameter. Technically speaking: “A view is an object of a class that
implements one of the interface types in the JFC, and that permits restricted access to a data
structure (CH).” A view object is a shallow copy of the original Collection object (ie, a modifiable
view can be used to modify the original).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 19 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collections Views
Some operations declared in Collection interface are marked as optional (add(), clear(),
remove() and some bulk operations). This is because for certain implementations of the
interface, these operations are deemed “destructive” — they attempt to modify the collection,
and, if this is not consistent with the collection contract, they are not supported and their
invocation throws UnsupportedOperationException.

boolean remove(E o) { throw UnsupportedOperationException; }

Also, “…some Collection implementations have restrictions on the elements that they may
contain, like prohibiting null elements, and some have restrictions on the types of their elements.
Attempting to add an non-eligible element throws an unchecked exception, typically
NullPointerException or ClassCastException. Attempting to query the presence of an
ineligible element may throw an exception, or it may simply return false”, depending on
implementation (Java API docs).

The reason for including optional operations in the first place is to increase re-usability and
flexibility of the Collection types.

The mechanism of views increases the number of concrete JFC classes by an integer factor
(number of views). The different views — normal (unsynchronised), synchronised, unmodifiable
and checked wrappers — that can be obtained from a Collection (or Map) type as three new
sorts of collections (or maps) except that they are supported by an underlying (Map) data
structure. Wrapper implementations delegate all their real work to a specified collection but add
extra functionality on top of what this collection offers. This is another example of the Decorator
pattern.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 20 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collections Wrappers

The wrapper views are obtained via static factory methods (methods which return newly created
objects) defined in Collections class of java.util package. The views and their advantages are:

the synchronised wrappers which add automatic synchronisation (thread-safety) to an
arbitrary collection:
Collections.synchronizedCollection(Collection c)
Collections.synchronizedList(List l)
... similar for Set, SortedSet, Map, SortedMap
Map map = Collections.synchronizedMap(new HashMap());
//Vector class is synchronised by default, it's slower then ArrayList

the unmodifiable wrappers which can be obtained via unmodifiableCollection() and
similar calls; all modifying methods in this view throw UnsupportedOperationException
the checked wrappers are needed when working with a legacy code, which uses the raw
(non-generic) collection types; they are obtained via checkedCollection() and similar calls;
checked view of the original raw collection will make a runtime check to enforce the type
safety lost in raw types
the concurrent collections are not standard wrappers, but are types defined in a separate
package java.util.concurrent; they provide implementations which are not only
thread-safe for synchronised access, but are specially designed to support multi-threaded use,
like ensuring that a collection becomes non-empty before a request to access it is carried out.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 21 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Oracle’s Java Tutorial Chapter on (Collection) Implementations

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Implementation of ADT May 2017 22 / 22

http://docs.oracle.com/javase/tutorial/collections/implementations/index.html

