
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Maps and Hashtables

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 1 / 9

http://cs.anu.edu.au/courses/comp6700/lectures.html#A8


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 HashMap and HashSet implementing classes
2 Hash Table — an implementation Data Structure
3 Good Hash Code
4 Ergodicity — maximising the use of a value set

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 2 / 9



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Set and SortedSet

The extensions of Collection type which disallow duplicates (identical elements): a repeated
invocation of add(elem) with the same element elem (or such elem1, that elem.equals(elem1)
returns true) returns false, and the collection remains unchanged. Set types, therefore, are sets
in the mathematical sense (some computer scientists call them “bags”). The elements of a set
are unordered. The subtype SortedSet (extension of the Set interface) represents a collection,
whose elements can be compared — they implement Comparable interface. The ordering allows
to introduce additional methods:

Set is implemented by the HashSet class with a hash table as the DS. Content modification (add,
set) and testing (contains) are O(1) operations. SortedSet is implemented by the TreeSet class
with a binary tree as the DS. If the implementation can maintain the balanced tree, the search
and modify operations are O(log2 N). Example — SetTest.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 3 / 9

http://cs.anu.edu.au/courses/comp6700/examples/collections/SetTest.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Map and SortedMap
Unlike all previous types from JCF, the Map family of types does not extends the Collection
interface: their contract is different — to represent not a collection of elements, but a
correspondence between two collections. So, a map contains key/value pairs, with no duplicate
keys (the keys form a set) and at most one value for each key. Map is a model of a mathematical
abstraction called function. The interface Map<K,V> operations are:

The SortedMap extension requires the set of keys be sorted. Methods like firstKey() and
lastKey() are added. The Map interface has two major implementation classes (similar to Set)
— HashMap which uses a hash table DS for the implementation (with similar O(1) performance
for put/get operations), and TreeMap which implements SortedMap in the similar to TreeSet
way (with O(log2 N) efficiency). Example — MapTest.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 4 / 9

http://cs.anu.edu.au/courses/comp6700/examples/collections/MapTest.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“The Great Invention of Computer Science”
An ordinary array can be thought of as a table or mapping between an integer index value and a
data value. Arrays enable efficient random access to the data, O(1). The performance worsens
when we copy in more than the original array can take — can we retain good performance in this
situation? Also, often one wants to index entries not by integers (by Stringy names) — can we
do it with O(1) efficiency (instead of resorting to linked lists)?

A data structure which allows us to do such things is a hash table. A HT is an array of linked lists
plus a hash code function, which maps the data element to the index value of the array.

There is no specific ordering of data in a hash table.
The hashcode mapping can be many-to-one.

We expect that different keys compute to different table indices, but if not — hash collision —
we add a new entry to the bucket (list before Java 8, Red-Black tree after). One should keep the
HT balanced and avoid growing some bucket lists too long. The performance of the data
entry/retrieval operations is O(1) (for well-balanced HT) and O(N) (for opposite extreme).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 5 / 9



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Balancing a hash table: hashCode()

To achieve the optimal performance (reduce the number of collisions), one should:

specify the initial bucket count (size) of a hash table sufficiently high (150% of the expected
number of elements)
if a hash table gets rather full (few empty buckets), it needs to be rehashed — a table with
more buckets is created and all elements are inserted into this new table (in JCF’s HashMap,
this is done automatically when the number of elements exceeds a load factor, 75% of the
table size; rehashed table is twice bigger)
to implement the hashCode() function properly for the class of elements which a going to
be hashed — only two elements which are equal, e1.equals(e2) == true, must have he
same value e1.hashCode() == e2.hashCode(). Every class which redefines equals()
method should also redefine hashCode().

Here is an example of the hashCode() for a simple Item class:

class Item {
private String description;
private int partNumber;

...
public int hashCode() {

// note use of prime number multipliers
return 13*description.hashCode() + 17*partNumber;

}
}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 6 / 9



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How to write the hashCode() function
Hash codes are meant to generate array indices which are uniformly and randomly distributed
over the size of the array. For this reason they work on an idea of “scrambling up” the values of
the data being hashed, so that it is not possible to predict where a particular object will be
stored. This is how hashCode() method for the String class might have been implemented:

hashCode(s) =
n−1∑
i=0

si · 31(n−1−i),

where n = s.length() and si is the code of the character s.charAt(i) (Exercise: implement
this function as a Java method.) Very similar inputs evaluate to quite different outputs:

String Hash value String Hash value

Hello 69609650 Harry 69496448

hello 99162322 Hacker -2141031506

To define a hash function for a class whose instances can be stored in HT is a subtle task.
Standard API’s Java classes should have good hash codes already. When you override
hashCode() for your own type, do it using the principle exemplified on the previous slide’s Item,
and use two- (or more) digit mutual primes (13, 17, 31…) as factors.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 7 / 9



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Nice Physics Analogy — Ergodicity
For simplicity, let’s assume that we need to define the hash code function for a newly defined type
which contains two fields of existing types (with well defined hash codes):

Why did we choose the multipliers m1, m2 to be mutually prime integers? Such choice allows us
the set of hash code return values to be closer to the full set of all possible values which the two
constituent hash codes can take; mathematicians call it a tensor product. Since every hash code
is calculated mod N, the values of hashCode() of OldClassOne and the values of hashCode() of
OldClassTwo cover a circle, and their “tensor product value set” is a torus. The value set of
NewClass.hashCode() looks like a winding closed curve of the torus surface. The more windings
it does around the two base circles, the denser it covers the torus, and the more points it will
contain. These winding numbers (up to unessential common factor) are those multipliers m1 and
m2.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 8 / 9



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 4.2.3, 7.3, 7.4

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Maps and Hashtables May 2017 9 / 9


