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Trees
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Binary Tree Data Structure

Trees are recursive data structure with more than one (two for binary trees) self-references. Of all
standard DS they are most complex and interesting.

There are different types of binary trees (see next slide) which differ by how the elements are
arranged and what operations are defined. The most commonly used is a balanced binary search
tree. This structure is defined recursively (as it should), and it enables a binary decision (see
below) to be made at each level which reduces the search time to an O(log2 N) operation (similar
to the binary search in a linear ordered array ).
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Types of Binary Trees
Multivalent trees are almost always can be reduced to binary ones (albeit with more complex node
structure). Of all data structure considered so far, binary trees are the most complex, diverse and
interesting (for research). Their value as DS is due to the fact, that the tree traversal is a key
element of every operation, and for a well structured (balanced search, or amortised) tree, the
traversal only consists in monotone descent, it takes O(h) steps (h is the height), and h ∼ log2 N.

There are many types of tree DS (all listed below are binary except for B-Trees):

Binary Search Trees (also known as Binary Ordered Trees)
Heaps — (almost) complete BT which are built to represent an array and used for sorting
Extensions of simple Binary Trees:

Red-Black Trees — binary trees where every node has one additional bit of data, (“red” or “black”),
and the tree structure is subject to a colour-constraint; every operation (read, add, delete) must
maintain this constraint (with an additional cost O(1)). This ensures that the branches difference in
length does not exceed the factor of 2, and the tree remains approximately balanced. (Java’s API
TreeMap implementation uses Red-Black Trees)
Splay Trees — an example of so-called self-amortising trees; after an access operation (usually, a
read) it pulls the accessed node to the top, such that successive reads of the same value only take
O(1). A sophisticated analysis allows to prove that the average performance over many reads is
amortised in this way to the tree-ideal of O(log2 N).

Expression Trees — where every node represents an operator, and every leaf is a value
B-Trees — used in out-of-core algorithms (when data is so large, that it doesn’t fit into
memory, and had to be operated while on the disk)
Many-many more-more
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Binary Search Trees

Binary Search Trees (BST) are simplest case. They are used in implementation of SortetSet
(TreeSet class) and SortedMap (TreeMap) interfaces.

BST are the most simple and often used type of binary trees. The example SearchTree.java
defines the SearchTree class with the following operations:

get(E e) — returns the node which contains e value (if found)
add(E e) — adding an element while preserving tree’s ordered structure
remove(E e) — removes an element while preserving tree’s ordered structure
height() — returns the tree height
successor(E e) — return the node with the value next larger to e
predecessor(E e)— return the node with the value next smaller to e
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Balanced Trees

It is important for a search tree to be balanced to exact the performance of its operations (listed
on the previous slide) of Ω(logN). Obviously, this requires the tree to be everywhere “dense”,
when every branch (path from the root to a leaf) has approximately the same value (maximum of
which is called height). Such “dense” trees are usually called balanced. When balancing is broken
some branches are abnormally long, with length ∼ N. If a search tree becomes strongly
unbalanced, the efficiency of its operations deteriorates to O(N).

Search trees are often build at run time, using the data which are streaming from an outside
source (like it’s done in the example SearchTree.java). If the source data is not skewed, the
resulting search tree will likely be balanced, bit this cannot be guaranteed. If unbalancing occur,
the tree can be adjusted to restore the balanced tree performance. This can be quite complex;
examples of self-adjusting balanced trees include Red-Black Trees and Splay Trees.

There is a duality between algorithms and data structures. The temporal structure of an algorithm
is dual to the “spatial” structure of data. When an algorithm performs in its generic fashion (with
its “generic” efficiency, eg, QuickSort running at Ω(N logN))), the structure of recursion calls
(the temporal portrait, as it were) looks exactly as a balance search tree — everywhere dense
without anomaly of protruding separate branches. This is how the “spatial” structure of a
balanced tree look like, and it gives an optimal tree traversal performance O(log2 N).

Temporal structure of one resembles structural (“spacial”) feature of another.
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Heaps

There are two meaning of the term heap in Computer Science.

1 A part of computer memory which is unused by the OS and other running programs, and
from which each program can borrow. In Java, all explicitly created objects use the heap
memory. If you declare a fixed size array with elements like literal strings, integers, enum
constants etc, the required memory is allocated in advanced. Otherwise, when a DS changes
during the execution (when adding new elements), the memory comes from the heap. When
an object is destroyed by the garbage collector, the memory is returned to the heap.

2 An array data structure a[i], i=0.. in which elements are placed on an imaginary tree in
accordance with the following index rules for an element of the index i:

Its parent’s index is ⌊(i − 1)/2⌋
Its left child index is 2i + 1

Its right child index is 2i + 2

The heap element a[i] also satisfies a special condition — a so-called heap property:
a[parent(i)] ≥ a[i] — for max-heaps
a[parent(i)] ≤ a[i] — for min-heaps

The array heap tree is always (almost) complete — the length of all branches is either equal
to the tree height h, or h-1 (this follows from the trivial mathematical fact that any number
N satisfies the inequalities: 2h ≤ N ≤ 2h+1 − 1 for some positive integer h).
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Heaps visualised
An array a of the length N can be “heapified” — the elements are given relationships between
each other as prescribed by the heap property; the effect is like placing the elements on a tree.
What advantage does rearranging an array into a heap give? Max-heaps are used in the sorting
algorithm HeapSort which has Ω(N log2 N) in-place sorting performance. Its performance does
not worsen like QuickSort on almost sorted inputs. Min-heaps are used in priority queues.

An array a[i] can be sorted by going through the steps:

1 Heapify a → heap(a). The cost of this operation is O(N);
2 Sort the heap(a) using HeapSort (its efficiency O(N log2 N) is stable due to “heapness”).

The factor N comes from the array traversal, and the factor logN is the cost of access ops,
O(h), h is the height h = ⌊log2 N⌋).
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Self-Balancing and Amortising Trees
If writing (adding and deleting nodes) into a tree is allowed, its initially balanced structure can be
compromised with the consequences of worsened behaviour — access cost O(h) (h is the tree
height) instead being O(logN) will be O(N). How to deal with this problem?

1 Add additional markers to nodes for constraining the structure; when the constraint gets
broken (after add or delete), perform an local transform (called rotation) to restore the
constraint. A well-known example is Red-Black Trees, in which every node (in addition to
actual data) has a colour marker, “red” or “black”. The constraint:

the root is always black
all leaves are black, and all nodes (except the root) are either black or red
a red node children are always black
for each node, all monotone descending paths to leaves contain the same number of black nodes

As mentioned above, the constraint guarantees that the tree remains approximately balanced
— same node descending path lengths differ at most by factor of 2. Complexity of RBT
structure and performance analysis is prohibitive for us here. A valuable study of Red-Black
Trees by R. Sedgewick includes a Java code and animations.

2 As alternative to using additional markers, one can restructure the tree by moving a most
recently accessed node towards the root. Such operation is called splaying, and the trees
which support it are called Splay Trees. The case for using Splay Trees is when same
elements are accessed repeatedly in close sequence (during which no large tree modification
is performed). So despite an initial access can be costly, O(N), after splaying, it becomes
Ω(1), and the average cost of one access gets amortised. It is possible to show that the
average cost can be made the “usual” O(log2 N), but we shall not go into details.
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Tries
(pronounced as tri:, like “tree” only shorter i:)

The name tries comes from reTRIEval in the retrieval (and storage) of information problem.
They are also called prefix trees, or digital trees. It is an effective way to implement dictionaries
(associative arrays) or sets. The data is organised in a tree form, but in a way different from a
search tree. One particular implementation (by Phil Bagwell) — “Hash Array Mapped Trie”
(HAMT) — plays an important role in one of the most promising JVM language Clojure.

A trie stores (key,value) pairs with keys “A”, “to”,
“tea”, “ted”, “ten” “i”, “in”, “inn”, and values
assigned arbitrarily (the root stores an empty string)

values are associated with leaves and some nodes
each key is defined by value’s position in the trie
all descendants of a node have the same prefix

A trie can provide an alphabetical ordering of the
entries by key and be used as an alternative to both
hash tables and binary search trees:

It has no collisions of different keys
It does not have performance deterioration due to imbalance
The worst look-up performance is O(m) (m is the length of a search string)
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Expression Trees
The above examples dealt with tree structures to store data. Trees can also be used to represent
expressions (including an entire computer program).

an arithmetic expression, eg, (3 + 3) * (9 - 6) (the text is “compiled” into the tree below)
a text, eg, a computer program, Foo.java

A tree which represents a computer program is called the Abstract Syntax Tree (AST).

Expression trees have operators for their nodes, and
values for their leaves. A process which creates an
expression tree from a text (an arithmetic formula
like on the right, or a computer program) is called
parsing. If the input string contains (syntax) errors,
the parsing fails. Once built, an expression tree can
be modified, optimised, transformed and evaluated.

Compilation is an example of parsing process. Parsing is done via application of grammar rules,
defined to substitute tokens of the input string onto syntactic categories (nodes of the parse tree)
and terminal symbols (leaves). Grammar is a set of recursive relationships:

<expression> ::= <number> | <expression> <operator> <expression> | (<expression>)

<operator> ::= + | - | * | / | %
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Trees May 2017 12 / 20
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Out-of-Core Algorithms

When data is too big to fit into memory and resides on a secondary storage device (hard disk,
database etc) the time to access it is 50,000–100,000 times longer (from 50 nano sec to
milli-seconds). If an algorithm involves a data structure from the “disk” — a so-called out-of-core
algorithm — it must minimise read and write operations (“disk op”) on such DS.

A very usable choice for on-the-disk DS is B-Trees. B-Trees are balanced like Red-Black Trees
but the number of children at every node can change from a few to virtually thousands. The
larger the number of children (let’s say a B-Tree has t of them on average), the shorter the tree
height: h = O(logt N), where N is the total number of nodes. Since the disk ops involve a node
access, the fewer of them performed, the faster the algorithm runs.
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The B-Tree Data Structure

The B-tree structure is defined as follows:

1 The tree node can have up to (t-1) sorted keys ki which define t intervals: [−∞, k1],
[kt−1,+∞] and [ki−1, ki], i = 1..(t − 1).

2 When a value k is sought (inserted, deleted), the descent is performed into the subtree of a
node which is represented by the i-th interval which contains k ∈ [ki−1, ki]

3 The maximum number of children t is determined by the size of memory (a page) which the
RW head can “scoop” in one op. The scale of t ∼ 103.

4 Standard search, add and delete operations can be defined with the performance Ω(logt N)
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Operations on Trees

Just as for other kinds of DS, some operations are quite simple when they are defined recursively.
For example, the search and return operation (call it get(e)) is called on the entire tree with the
argument e of the type E data which is stored in tree nodes; if the node which contains the data
equal to e is found, the tree node (which has the type Tree<E>) is returned, if not found — null
value is returned. The operation add(e) must preserve the search-tree property: It should go
down to one of the leaves and add a left or right subtree into which the new element e will be
“deposited”. The key aspect in both case is the tree traversal, and it is quite simple since we use
the search-tree property:

get(e) — start with the root node this and examine how its element compares with e by
calling this.stuff.compareTo(e) (that’s why we made E implement Comparable)

if this.stuff.compareTo(e) == 0 — found it, return this
if this.stuff.compareTo(e) < 0 — go left: this.left.get(e)
else — go right: this.right.get(e)

add(e) — Start with the root (as alway) and, using comparisons to choose left or right turn
at every node, traverse all the way down to a leaf where a new node containing the value e is
attached. All new values are placed at one of the leaves at the bottom; this is the easiest
way to preserve the search-tree properties while adding elements.
remove(e) — Is hardest of all since the element e can be anywhere.
printAscend(), printDescend(), height() — all recursive and simple whole-tree ops.
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Deleting a Tree Node

The example SearchTree.java presents implementation of the first three operations in which
recursion plays a vital role — get(e) and add(e) are downright recursive, and remove(e) relies
on get(e) to the node e. Details of remove(e) are somewhat tricky.

One has to consider four cases — three simple and a tricky one. When a node slated for deletion
is found, it is pulled out of the tree, and its place is taken by another node which is carefully
chosen in such a way that the resulting tree is still a search tree.

(Case 2 is not shown — it’s similar to Case 1, just replace the right subtree onto the left one.)
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Deleting a Tree Node (concl)
The most difficult case is generic one — when the deletable node z has a normal right subtree r,
such that the right child is not the smallest element greater than that in the deletable node (like
in Case 3). The delete operation requires a “surgery” to implant the node with smallest element y
in place of z and rearranging broken links to preserve the search property. In more detail:

1 Find y, smallest in z.r
2 Extract z and move y in its place; y.l (formerly null) becomes z.l
3 former y.r, x, now takes place of y with all links carefully adjusted

It’s worthy to study the code in SearchTree.java.
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Non-Recursive Tree Search

Algorithms can be (non-)recursive, and DS can be (non-)recursive. Do all elements of this
“2×2”-matrix make sense?

Recursive operation on a recursive DS?
Define get(e) on a link list (an exercise for you)
Review BST operations which we’ve just reviewed (SearchTree.java)

Recursive operation on a non-recursive DS (like an array)? Of course — recursive sorting
algorithms like QuickSort and MergeSort, BinarySearch
Non-recursive operation on a non-recursive DS? SelectionSort, InsertionSort
Non-recursive operation on a recursive DS? More particular: a non-recursive traversal
(search) on a binary tree?

Two important examples — breadth-first search (BFS) and depth-first search (DFS) are used for
(complex) tree traversals when no facilitating property like search-tree is available, and one has to
explore the entire tree. Queue and Stack local variables are used in BFS and DFS respectively as
means of keeping the track inside the tree during the traversal (they are like Ariadne’s thread in the
Minotaur’s labyrinth). Examples are in DepthFisrtSearch.java and BreadthFisrtSearch.java (these
examples are not available this year).
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Comparable and Comparator

Comparing objects (elements in a collection) can be done in two ways:

class of stored objects implements Comparable interface (to support the compareTo(Object
o)method)
the constructor of TreeSet (or, TreeMap) is passed a Comparator<E> parameter (which has
the method int compare(E e1, E e2)), if the elements do not implement Comparable, or if
we want to compare them differently, and so we need to specify which comparison function
to used for sorting the set.

class ItemComparator implements Comparator<Item> {
public int compare(Item a, Item b) {

String descrA = a.getDescription();
String descrB = b.getDescription();
return desrcA.compareTo(descrB);

}
}
ItemComparator comp = new ItemComparator();
TreeSet<Item> sortByDescription = new TreeSet<Item>(comp);

In the example Library1.java, the same collection of Books is first sorted by their natural order,
and then by the the length of their title.
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Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 7.3, 7.4, 8.9, 8.10
Oracle’s Java Tutorial chapter on Map Interface and its Implementation
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