
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Code as Data

Alexei B Khorev

Research School of Computer Science, ANU

March 2017

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 1 / 19

http://cs.anu.edu.au/courses/comp6700/lectures.html#F1


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 What does treating code as data mean?
2 Why is treating code as data useful?
3 How to pass code for deferred execution?

Inner Classes
λ-Expressions

4 Account example
Pre-lambda’s way (Java 1–7)
Lambda’s way (Java 8)

5 λ’s way 1: When the name does not mater, and everything else is inferred
6 λ-expression examples

Callbacks
Threads
Comparators

7 λ’s way 2: invokedynamic — no byte code proliferation
8 Reasons for λ-s

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 2 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fleeting Nature of Software Requirements

Software is… soft

Easy to change
Easy to mandate change (new/modified requirements)
Cost of supporting changeability is not so low

need to change/extend code
need to test it

Solution? Use of language/platform with which the cost of change is lower

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 3 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bank Account Example

In a traditional banking example of an Account class, there are “common-sense” class members:

class Account {

private double balance = 100.5;
private final double interests;

Account(double bal, double intr) {
... ... ...

}

double getBalance() { ... }
private void setBalance(double bal);
void deposit(double x) { ... }
void withdraw(double x) throws InsufficientFundsException { ... }
void printBalance() { ... }
void accrueInterests() { ... }
...

}

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 4 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Processing accounts

There are hundred of thousands (or millions) of such accounts in the database. They regularly
need processing — update their data (balance, payments, interests etc).

// somewhere in the client code
List<Account> accounts = /* get them from the database or smth */;
for (Account a: accounts) {

a.accrueInterests(); // changes the balance value in every account
}

Now comes the first change: add check account aspect to allow bank checks be issued against
the account balance; the checks will be settled at regular intervals as a part of existing account
processing practice:

// somewhere else in the client code
List<Account> accounts = ...;
for (Account a: accounts) {

if (a.isCheckAccount())
a.processChecks(); // changes the balance value in every account

}

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 5 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

State (value) parameterisation

Ability to pass value to a method allows to express state parameterisation — depending on the
value of object (its state) computation will have different effect (different values will be returned):

state =⇒ value

Good (that’s why we have methods with formal parameters!), but not flexible enough if we need
to change computation, but the cause of this change is not readily expressed through the change
of state. For example, how to express the rule (criterion) which is used to select accounts for the
purpose of performing a certain task:

accountsOfInterest = getAccounts(accounts, <aspect-specific>);
process(accountsOfInterest, <task>);

How to express <aspect-specific> “parameter”?
How to express <task> “parameter”?

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 6 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Aspects and Tasks

Aspect: select check accounts, Task: settle the due checks

// body of getAccounts(accounts, <check-accounts>)
List<Account> getCheckAccounts(accounts) {

List<Account> checkAccounts = new ArrayList<>();
for (Account a: accounts) {

if (a.isCheckAccount())
checkAccounts.add(a);

}
return checkAccounts;
}
// body of process(checkAccounts, <settle-the-checks>);
for (Account a: checkAccounts)

a.processChecks();

The two methods can be replaced by one, but often is useful to keep them separate as the
checkAccounts may be used elsewhere.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 7 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Aspects and Tasks

Aspect: select term deposits which mature today, Task: accrue due interests

// body of getTermDeposits(accounts, today, <mature-today-deposits>)
List<Account> getTermDeposits(accounts, today) {

List<Account> matureDeposits = new ArrayList<>();
for (Account a: accounts) {

if (a.isTermDeposit() && a.maturityDate().equals(today))
matureDeposits.add(a);

}
return termDeposits;

}
// body of process(termDeposits, <accrue-interests>);
for (Account a: checkAccounts)

a.accrueInterests();

More similar processing tasks can be easily formulated.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 8 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Treating code as data

Can we reduce amount of code repetition? Can we replace multiple methods (for selection and
processing in different aspect-tasks) by a fewer methods (one?) in which aspects and tasks are
represented by parameters?

The aspects and tasks are expressible as code (boolean expressions a.isCheckAccount() and
a.isTermDeposit(); different methods accrueInterests() and processChecks() with similar
signature account -> void). Can we represent these codes by a formal parameter?

We have methods to express code, but can we pass methods to other methods as parameters?
And can we define methods which themselves return methods, not values?

Suppose aspectMethod will represent either getCheckAccounts, or getTermDeposits (and
other) “method-values”, and the processMethod will represent either processChecks or
accrueInterests (and other) “method-values”
Is it possible to define a “super”-method to perform all the processing tasks at once when
it’s invoked with corresponding “actual method values”?
process(accounts, aspectMethod, processMethod);

Yes, it is! But not in such naive form — method name is not a legal expression, and the
invocation expression, like getCheckAccounts(), is not the code, it is the value which the
corresponding actual method returns.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 9 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Passing code as Data
Everything is an object in Java (except for primitive, but let’s forget about them). Objects have
code inside them (defined in object’s class). If we have an interface, say Action, with a single
method in it, say Action.doIt(), then having a reference action of the type Action we can pass
it to a method when the latter is defined (formal parameter action), and when invoking the
method, we pass a real object action to it. The only problem is to implement the Action interface
and create an actual object parameter for passing, before or during the method invocation.

interface Action<T> {
void doIt(T t);

}
void aMethod(T t, Action<T> action) { // can return a type as well

action.doIt(t); // t can also come for outside (closure)
})
... ...
class ActionOne implements Action<Account> { // Account is a value for T

void doIt(Account a) { ... };
}
Action<Account> actionOne = new ActionOne();
aMethod(t0, actionOne); // the code value is passed and executed

The “code value” is created when the interface Action is implemented before an object of this
type is created and passed to an invoked method. Can it be made more value-like passing, when
the actual parameter is passed directly?

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 10 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Anonymous Inner-classes

Java always (since Java 1.1 of 1997) could represent code by a parameter, and pass this code to
a duly defined method. But this was rather awkward. It required inner-classes, and often was
done without given them a name, i.e. via anonymous inner-classes.

V v = ...;
aMethod(new Action<Account> {

void doIt(Account a) {
// if v is used, then this is a closure
...

}
});

What we do inside the implementing body of doIt() is up to us (provided that the type Account
allows it).

This was a standard way to define

callbacks in GUI programs
thread execution tasks
aspects in implementation of standard algorithms like sorting

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 11 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Examples of the old way

Callbacks in GUI programs (define the action in response to a signal which a widget
registers, eg, a button click):
scene.onKeyPressedProperty().set(new EventHandler<KeyEvent>() {

@Override
public void handle(KeyEvent ke) {

if (ke.getCode() == KeyCode.R)
rect.getTransforms().add(new Rotate(22.5, 410, 200));

}
});
Thread execution code (by implementing the Runnable interface)
new Thread(new Runnable {

public void run() {
for (int i = 0; i < 1000; i++)

doWork();
}

).start();
Perform sorting operations (and others) on collections when the sorting criterion is passed as
an object of Comparator interface.
Collections.sort(books, new Comparator<Book>() {

public int compare(Book b1, Book b2){
return b1.toString().length() - b2.toString().length();

}
});
Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 12 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Accounts of the old way

interface Operation {
void operation(Account7 a);

}

static Operation interests = new Operation() {
public void operation(Account7 a) {

a.accrueInterests();
}

};

static Operation checks = new Operation() {
public void operation(Account7 a) {

a.processChecks();
}

};

Map<String, Operation> bankProcedures = new HashMap<>();
bankProcedures.put("interests", interests);
bankProcedures.put("checks", checks);

// if today is the day to pay interests
process(accounts, bankProcedures.get("interests"));

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 13 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The new way: λ-expressions

Since the interface used in passing code tricks has only one method (to be implemented when a
“code-value” is created), its name is not important. The rest of method’s signature, parameters,
return values and exceptions, can be inferred by analysing the expression(s) of the method body
(including the return statement). Such one-method interfaces (not counting the recently allowed
default methods, of course) are now referred to as functional.

These ideas allowed to replace an object of anonymous inner class by a new type of lambda (λ)
expression — which is semantically (but not as the byte code!) equivalent to that object:

aMethod(Account a -> doIt(a)); // with explicit type of a, or
aMethod(a -> doIt(a)); // without it (compiler will infer)

λ expression syntax

(parameters) -> expression // for simple codes

(parameters) -> { statements; } // for multi-statement codes

When the compiler sees a lambda, it creates an instance of a functional interface.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 14 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lambda examples

(from M. Naftalin’s Lambda FAQ on-line λ-tutorial)

1. (int x, int y) -> x + y // takes two integers, returns their sum
2. (x, y) -> x - y // takes two numbers, returns their difference
3. () -> 42 // takes no values, returns 42 (parentheses needed)
// (next) takes a string, prints its value to stdout, returns nothing
4. (String s) -> System.out.println(s)
5. x -> 2 * x // takes a number, returns its double value
// (next is a block) takes a collection, clears it, returns its previous size
6. c -> { int s = c.size(); c.clear(); return s; }

Lambda Syntax Rules

Parameter types are declared or omitted (they will be inferred, one cannot mix explicit and
implicit use).
return statement (if used) should be present in every branch; for a block body — the rules
for using the return keyword are the same as for an ordinary method body.
For a single expression the use of return is optional (inferred).
Expression may evaluate to a value (value compatible), or may not (void compatible).
Despite the appearance, determining the type of objects is not postponed till run-time —
Java is still statically typed.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 15 / 19

http://www.lambdafaq.org/


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Examples of the new way

How much shorter, yet more expressive the old statements look when rewritten with
λ-expressions! Only code that matters (the “code”) is present, all the ceremony is dropped.

Callbacks:
scene.onKeyPressedProperty().set(ke ->

{ if (ke.getCode() == KeyCode.R)
rect.getTransforms().add(new Rotate(22.5, 410, 200));

}
);

Thread code (by implementing the Runnable interface);
new Thread(() -> {

for (int i = 0; i < 1000; i++)
doWork();

}
).start();

Sorting operations using the Comparator object:
Collections.sort(books,

(Book b1, Book b2) -> b1.toString().length() - b2.toString().length());

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 16 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Accounts of the new way

interface Operation { // no need for Operation
void accept(Account8 a); // we can use API's Consumer

}

static Operation interests = a -> a.accrueInterests(); // simpler,
static Operation checks = a -> a.processChecks(); // alright, BUT
// no need for interests, no need for checks
Map<String, Operation> bankProcedures = new HashMap<>(); // only these
bankProcedures.put("interests", a -> a.accrueInterests()); // lines are
bankProcedures.put("checks", a -> a.processChecks()); // retained

// if today is the day to add interests
process(accounts, code.get("interests"));

Sweet… but there is MORE:

Indy — invokedynamic code in JVM (new, since Java SE 7)

Compile the code in pre-Java 8, and for every anonymous inner class there will be a bytecode
class (demo with Java7/Account7)
Compile the code in Java 8, and no additional bytecode classes will be produced for any
lambda expressions created in the code (demo with Java8/Account8)

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 17 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Why λ’s were introduced?

To facilitate adoption of functional programming style into Java. Many concurrent and
reactive (event-driven) problems have better solutions when dealt with in functional way;
λ’s allow to defer the execution of the code till later (better solution than using methods and
inner-classes);
allow to capture the context when executed (closures);
allow lazy programming (conditional execution, more memory efficient when containers are
processed with streams);
allow composition of various operations applied on stream objects;
allow to split multiple executions (eg, when operating on lists) into subtasks and performs
them concurrently;
last-not-least, use of λ’s instead of (anonymous) inner classes (predominantly in call-backs)
puts a break on byte-code classes proliferation, example — BuilderAtWork.java. The new
JVM’s instruction called invokedynamic is used to execute the λ-expression code in the
bytecode, which does not involve new classes created and loaded, and has performance
improvements.

Stylistic advantages

Anonymous (less info)
Functions (more flexible)
Passed around (as argument to a method or stored in a variable)
Concise
Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 18 / 19

http://cs.anu.edu.au/courses/comp6700/examples/javafx/BuilderAtWork.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 3.4, 3.6–3.9
Oracle’s Java Tutorial on Lambda Expressions
Maurice Naftalin Lambda FAQ (very useful)

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Code as Data March 2017 19 / 19

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://www.lambdafaq.org/

