COMP6700/2140 Functional Interfaces

Alexei B Khorev

Research School of Computer Science, ANU

March/April 2017

«O>» <Fr «=» «=)H» Q>

http://cs.anu.edu.au/courses/comp6700/lectures.html#F2

Topics

6

@066

Again: \-expression Sogﬁ instance of FI
Predefined Functional Interfaces

Method References: reuse of pre-existing code
Default Methods

o Default Methods in Functional Interfaces
o Extending Interfaces with Default Methods

Closures
Identity, state and behaviour and A-s
Exceptions in A-expression’s
Exceptions vs Optional
More on Interfaces:

o Mixins

o Traits

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces

March/April 2017

2/23

Lambda Expressions: Recap and Some Subtleties

A expression syntax

(parameters) -> expression

(parameters) -> { statements; }

@
@
(<]

A-expression’s allow to pass code to defined methods for later execution.

A-expression can be assigned to a variable of a functional interface type.

Often, A-expression’s are treated as literal data, objects which represent them in JVM do not
have identity (equlas-method does not have consistent semantics — you can experiment
with this), and their bytecode is not stored in classes, but instead is executed by the
invokedynamic JVM instruction.

A X-expression can be recursive: make a reference to itself (via an assigned reference) inside
the A-body (on RHS of "->").

A X-expression can throw an exception like an ordinary exception or constructor (Java API
functional interfaces do not throw, you may need to define your own Fl, or catch an
exception when assigning to or passing \).

The most prolific use of A's has been in the new style of collection processing which relies on
internal iteration (without explicit reference to an iterator). On the level of API, such
processing is implemented in java.util.stream package and various default methods added
to pre-existed interfaces (like java.util.List and many others).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 3/23

Functional Interfaces API

Most often used functional interfaces, defined by the combination of parameters -> value, have

been defined in a new package java.util.function. It includes interfaces with type values

being standard Java types (like Double, Integer, Boolean etc), as well as generic ones

o Consumer<T> — represents a function object that accepts a single input argument and
returns no result, T -> void, eg, prints the object of T; side-effects are expected (method’s

name accept)

o Function<T,R> — a function object T -> R (used in maps, method’s name apply);

o Predicate<T> — a function object T -> Boolean (used in filters, method’s name test);

o Supplier<T> — a function object () -> T, can be used to create instances of T on demand,

object-equivalent to T: :new (method’s name get)

All of them can be used as assignment targets for a lambda expression or method reference.

Predicate<Account> accSelector = a -> a.isCheckAccount();
Consumer<Account> accProcessor = a -> a.processChecks();
for (Account a: accounts) {

if (accSelector.test(a)) accProcessor.accept(a);

}
accSelector = a -> isTermDeposit();
accProcessor = a -> accruelnterests();

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces

March/April 2017

4/23

Streams: a sneak preview

This is good already, but with streams the processing functional interfaces can be put to use in

even more nimble and elegant way.

The functional interfaces have been predefined because they are used as parameters of stream
operations — methods which are called on stream objects. A great feature of stream processing

is that operations can chained together (lazy computations):

boolean
f—

T ——
o stream.filter(predicate) — i r=tiee]

T (R
0 stream.map(transform) — “lfecte——>

ST e L

o stream.filter(predicate) .map(transform) boolean

Here, predicate and transform are instances of java.util.function.Predicate and
java.util.function.Function interfaces.

acc.processChecks();

// if some checks were not cleared (due to insufficient funds)

double totalDishonoured = acc.outstandingChecks
.stream() // converts a collection into a stream
.reduce((a,b) -> a + b) // total unsettled amount wrapped in Optional
.get(); // returns outstanding due amount out of Optional object

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017

5/23

Method References

So much code is already defined as methods. Can it be (re-)used to avoid lambda-repetitions?
Yes (with some restrictions)!

button.setOnAction(e -> System.out.println(e)); // instead can be written
button.setOnAction(System.out: :println); // like this
books.sort (Book: : compareTitleLength); // assuming Book has comparelitleLength

System.out: :println is a method reference: the setOnAction method supplies an argument
(event), if the method reference signature matches — there is ambiguity how to use the
argument and what to do.

Three cases

@ object::instanceMethod — equivalent to A-expression which supplies the parameters
@ Class::staticMethod — ditto (eg, Math: :pow is the same as (x,y) -> Math.pow(x,y))
@ Class::instanceMethod — the first parameter is the target of the method:

String: :compareToIgnoreCase is equivalent to (x,y) -> x.compareToIgnoreCase (y)

Constructor References

String s -> new Label(s) is the same as Label: :new. Works with arrays, too: int[]::new
can be passed an integer n (an array of length n will be returned).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 6 /23

Default Methods

To perform an operation on a collection is very frequently occurring task. The functional
approach, when a function (code) which performs the operation is passed to a traversing method
invoked on the collection could be quite elegant (shorter) solution compared to a traditional one:

for (int i = 0; i < list.size(); i++)
System.out.println(list.get(i));

But
list.forEach(System.out: :println);

cannot be used until forEach is added to the JCF, yet this would break backward compatibility
(all existing code which implements Collection will be broken — “no can do”).

The trick is to add a concrete method with such name to the Collection interface (give the same
treatment to other library interfaces). Sounds impossible (ridiculous)? Maybe, but it is not
wrong, and it is done! Default methods are marked by qualifier... (surprise!) default.

interface Person {
long getId(); // usual abstract method
default String getName() {
return "John Doe, NSA analyst";

}

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 7/23

Default Methods: “Grand Piano in the bushes”

Revisit the Book class, which (imagine!) has been augmented with the method:

public int titleLength() { return this.title.length(); }

but not with compareTitleLength() (used above as a method reference in sorting). Can we
easily sort the list against the title length? We cannot use titleLength for the method reference
in sort (Book: :titleLength) because sort needs a Comparator object. Comparator is a
functional interface of the type (T,T) -> int. Does Comparator have a default method which

returns an object of this type?

% javap java.util.Comparator | grep compar
public abstract int compare(T, T);

public static <T> java.util.Comparator<T>
java.util.function.comparingInt(ToIntFunction<? super T>);

ToIntFunction is a functional interface of the type we need — our task is easily accomplished:

books.sort (comparingInt (Book: :titleLength)) ;

Note: a more general default method comparing which returns Comparator also exists and can

be used. (A free hand in adding default methods?)

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 8/23

Default Methods in Functional Interfaces

Two FI (as example) have the default methods:

0 java.util.function.Predicate
@ Predicate<T> and(java.util.function.Predicate<? super T>);
@ Predicate<T> negate();
@ Predicate<T> or(java.util.function.Predicate<? super T>);
@ static <T> Predicate<T> isEqual(java.lang.Object);

o java.util.function.Function (super and extends in arg type declaration are omitted)

@ Function<V, R> compose(java.util.function.Function<V, T>)
@ Function<T, V> andThen(java.util.function.Function<V, T>)
@ static <T> Function<T, T> identity()

What is their purpose? Notice, that they return the same type of Fl in which they are defined.
They are used for composing two or more lambdas (for function composition, see an example
PseudoRandomGenerator.java)

o composition functions: (fo g)(x) = f(g(x)) = x =5 y Lz
o composing predicates:
inventory.sort (comparing(Book: :price) // sorting by price

.reversed() // from dear to cheap
.thenComparing(Book: :getCountry)) // and then by country

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 9/23

http://cs.anu.edu.au/courses/comp6700/examples/lambdas/PseudoRandomGenerator.java

Inheritance with Default Methods
Interfaces with implementation change the formerly simple business of single-only inheritance.

public interface A {

default void hello() { System.out.println("Hello from A"); }
}
public interface B extends A {

default void hello() { System.out.println("Hello from B"); }
}
public class C implements B, A {

public static void main(String... args) { new C().hello(); }
}

Three rules of resolution

@ Classes always win. A method declaration in the class or a superclass takes priority over any
default method declaration.

@ Otherwise, sub-interfaces win: the method with the same signature in the most specific
default-providing interface is selected. (If B extends A, B is more specific than A).

@ If the choice is still ambiguous, the class inheriting from multiple interfaces has to explicitly
select which default method implementation to use by overriding it and calling the desired
method explicitly.

The method dispatch now is more complex — it is both vertical and horjzontal.
Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 10 / 23

“DDDD": Default Dreadful Diamond-of-Death (resolution?)

There is a new syntax feature which concerns the selection of implementation during a multiple
implementation of default methods (I assumed the static import of java.lang.System.out to
cut on the line length, and used (syntactically illegal) acronym p.s.v for public static void):

interface A { interface B {
default void foo () { default void foo () {
out.println("I am from A"); out.println("I am from B");
} }
} }
interface C extends A, B { class InhTest implements C {
@Override p.s.v. main(String... args) {
default void foo () { new InheritanceTest().foo();
B.super.foo(); // case A }
out.println("Override from C"); // output
A.super.foo(); // case B I am from B
} Override from C
} I am from A
Notice the parent super-reference in C: A.super.foo() — something we haven't seen before

because there was no multiple inheritance by implementation in Java. We can even have both
super's in overriding C.foo()!
Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 11 /23

Default Methods: not quite new feature!

Declare an interface (functional or not):
interface A { void sneeze(); }
Declare variables of type A and assign them to suitable A-s:

= () -> System.out.printf("Usually I sneeze 2 times)n");

A a
A b= () -> System.out.printf("Usually I sneeze 3 timesn");

Now, ask yourself: Is a an object? Yes. Is every object an instance of the class Object. Yes. Can
we call equals, or hashCode on it? Of course!

jshell> a.toString()
$6 ==> "$Lambda$17/140113266702ac273d3"

jshell> a.equals(b)
$8 ==> false
jshell> a.hashCode ()
$9 ==> 717386707

Why would it be wrong if we call own methods on a? To deny it would be “undemocratic”. The
morale — this was already happening before Java 8!
Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 12 /23

Default Methods: Caveat

[This consideration is due to Rafael Winterhalter Java 8 default methods can break your (users’) code]

Default methods (also called virtual extension methods, or defender methods) are a smart
invention, but care should be exercised when using them (for your own API).

Imaging the following — we wrote a class (call it Mylnput) which inherited from ThirdPartyClass
and implemented Simplelnput from some API. The default method bar () from that interface has
been overridden with the super-reference to the original method. Then, the APl authors
extended Simplelnput into ComplexInput, with a would be better implementation of the default
method bar (), and decided to make ThirdPartyClass implement Complexinput and override
ComplexInput.bar(). The client, Mylnput has no change and still uses Simplelnput (hasn't
change) and ThirdPartyClass (changed, Simplelnput now is its “grand parent interface”). The
attempt to recompile MyInput.java will fail (the source code for this example is in two
directories in “Examples” — before and after):

% javac MyInput.java
error: bad type qualifier SimpleInput in default super call
SimpleInput.super.bar(); // implementation from implemented interface

method bar() is overridden in ThirdPartyClass

Yet, surprisingly, the JVM will not see anything wrong with the old Mylnput bytecode (copy
MyInput.class from “before” to “after”, and run it there).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 13 /23

http://mydailyjava.blogspot.com/2014/05/java-8-default-methods-can-break-your.html
http://cs.anu.edu.au/courses/comp6700/examples.html#defaults_before
http://cs.anu.edu.au/courses/comp6700/examples.html#defaults_after

Closures

The feature used in language holy wars: “Does your language support closures?”

It's simple: a closure is code which captures variables from an enclosing scope. In case of \'s:

public static void repeatMessage(String text, int count) {
Runnable r = () -> {
for (int i = 0; i < count; i++) {
System.out.println(text);
Thread.yield();
}
};
new Thread(r).start();

The variables from the enclosing method which are not lambda’s parameters (so called free
variables) text and count can be long gone after the repeatMessage() has returned (because
the thread started by it may go for longer, it’s independent), but the actual parameter values will
be still in use.

Limitations: cannot alter free variables from the outer scope when the closure executes: they
have to be effectively final — no final modifier is necessary but an attempt to change them will

result in compile error (for “proto-closures” — inner classes — final was obligatory).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 14 /23

Mutating Closure

If a free variable is a reference of a mutable object, the closure can change (mutate) such object
from the outer scope:

QFunctionalInterface
interface Converter<F, T> {
T convert(F from);
}
int num = 1;
int[] values = new int[1]; values[0] = num;
System.out.println(values[0]);
Converter<Integer, String> stringConverter =
(from) -> {values[0] *= 2; return String.valueOf(from + num);};
//num = num * 10; // this would be a compile error
System.out.println(values[0]);

An attempt to change num within the \-expression, or even outside would cause a compile error.
An example which tests these attempts is OuterScope.java.

This mutating trick may seem clever, but it suffers from performance problems and race
conditions (in multi-threaded environment). There are better ways than utilise a captured variable
(see F5).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 15 /23

http://cs.anu.edu.au/courses/comp6700/examples/lambdas/OuterScope.java

Iterator, Iterable and A-expression

Iterator allows an access to a container internals
through methods hasNext () and next(); if
iter is an iterator to a container coll, the
latter can be traversed with the former:

for (; iter.hasNext();) {
T t = iter.next();

Iterable is an object whose class
implemented this interface, its method
iterator(); an iterable container coll can
be traversed with a "foreach"-loop:

for (T t: coll) A

An iterable provides the iterator as a return value of its iterator() method. What about
reversing this operation? A-expression can do the trick:

iterable — iterator

Iterator<T> iter coll.iterator();

To traverse with "foreach"-loop by having
an iterator one has to “help” the compiler to
set the target type of the A-expression:

iterator — iterable

Iterable<T> iterable
() -> iterator;
for (String s
(Iterable<String>) () -> iterator){

Alexei B Khorev (RSCS, ANU)

COMP6700/2140 Functional Interfaces

March/April 2017 16 / 23

Recursive A-expression’s

A \-expression can contain reference to itself inside the A-body, ie be recursive. A popular
(corny) example is Fibonacci numbers:

public IntUnaryOperator fib =n -> (n < 2) ? n :
fib.applyAsInt(n-1) + fib.applyAsInt(n-2);

(The functional interface java.util.function.IntUnaryOperator declares an abstract method
applyAsInt (int x) which returns int).

An attempt to have fib as a field initialised outside a constructor, or as a local variable inside
main would fail (by the rules restricting forward references in initialisers for local or instance
variables). However, by providing the lambda with an identity, ie by making it an object — via
explicit constructor declaration and invocation — defining a recursive \-expression becomes
possible. Two ways to make it an object:

@ RecursiveLambda.java — to define a constructor which initialises fib, or
@ StaticRecursiveLambda.java — to declare static fib and initialise it with a static block.

In general (according to Java Specification), the issue whether a A-expression is an object (has an
identity) or not is undetermined (it is, of course, is defined in platform implementations and inside
API, but it is not exposed to API clients).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 17 /23

http://cs.anu.edu.au/courses/comp6700/examples/lambdas/RecursiveLambda.java
http://cs.anu.edu.au/courses/comp6700/examples/lambdas/StaticRecursiveLambda.java

Identity, state and behaviour

Semantic Difference between \-expressions and inner classes

o A-declarations do not introduce a naming scope, the keyword this (and super) has the
same meaning as in the enclosing environment — the enclosing object (and its superclass
object). The following program prints “Hello, world!"” twice (this is a self-reference of an
object with already overridden toString() method).

public class Hello {
Runnable r1 = () -> System.out.println(this);
Runnable r2 = () -> System.out.println(toString());
public String toString() { return "Hello, world!"; }
public static void main(String... args) {
new Hello().rl.run();
new Hello().r2.run();

}

o An inner class does create a naming scope: The would be same version with anonymous
inner classes with which r1 and r2 are instantiated, executes a non-overridden version of
Object.toString() (since r1 and r2 extend Object directly, and this and toString() are
“theirs”, not the outer class’s). Think this over! — Hello.java and OldHello.java.

Of three aspects of an object — identity, state and behaviour — A-s represent only behaviour
(“code”), their state is subsumed into the outer object; since they have no (own) state, lambdas
do not need identity.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 18 /23

http://cs.anu.edu.au/courses/comp6700/examples/lambdas/Hello.java
http://cs.anu.edu.au/courses/comp6700/examples/lambdas/OldHello.java

Exceptions in lambdas

What if the body of a lambda-expression throws an exception? Nothing special — deal with it
(by catch-ing) in a usual manner (from the Assignment One sample program
JacksonSamplerStream. java):

Stream<String> lines = Files.lines(Paths.get(args[0]),
StandardCharsets.UTF_8);
lines.forEach(s -> {
try {
tweet.putAll (mapper.readValue(s, Map.class));
tweet.forEach((k,v) ->
System.out.printf("%s: %sin", k, v));
System.out.println("================="");
tweet.clear();
} catch (IOException ioe) {
System.out.printf ("Bad json record %s/n", ioe);
}
b;

Catching and not re-throwing but returning the same type as the try-branch is one possible way.
The result can also be wrapped inside an Optional. Lambda expression are not allowed to throw
exceptions (and they need not to).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 19 /23

Exceptions vs Optional

A-expressions represent a feature of functional programming style, in which methods are regarded
as faithful implementation of ideal mathematical functions: they take an input (the argument)
and they return a value without any other effect. Yet, mathematical functions often do not
produce a value (division by zero, square root of a negative number..) — one can argue that
mathematics always tries to resolve this by extending the set of values such that these
“non-return” cases get eliminated. In programming, there are two possibilities:

. R T R Optional<T>
input output input output
> F<R,T> > > F<R,T> >

i exception

v
@ Make methods to throw exceptions when the return value cannot be correctly computed

For functional programming, the presence of the second (exception) channel is very foreign. It is
desirable to have only one output which always returns.

@ Box the return value, and leave it to the caller to deal with possibility that the box may not
contain the value at all — this is an approach when the method is defined to return an
Optional (“the box") object. We slight touched upon this in P5 lecture. The functional style
is better suited for the second approach. That's why most of functional interfaces in the
standard APl do not throw exceptions. That's why some stream methods (reduce etc)
return java.util.Optional<T> instead of T.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 20 /23

http://cs.anu.edu.au/courses/comp6700/lectures/P5.pdf

Recap on Interfaces

interface declaration was introduced in Java to retain multiple inheritance by contract, but to
avoid (perhaps, misperceived) complexity of multiple inheritance by implementation.

At the same time, interface represents most flexible type definition which is the key to
exercising the “program to interface” principle of OOP. The possibility to define an object type by
an interface, which does not have any data associated with it, indicates that the essence of
object-oriented programming is not state representing data of an object, but object’'s behaviour
defined by methods declared in its interface.

A useful application of interface’s is to have them as mixin's — types which a class can
implement additionally to its “main” type. Your class is defined by whatever you include in its
declaration and it also is comparable (via implementing Comparable), or cloneable, or serialisable,
or runnable, or all those things together (if this makes sense, sometimes it doesn’t). Extending a
class is specialisation, implementing (mixing-in) an interface is composition.

Using the words of Brian Goetz (in his answer to StackOverflow in Feb 2015):

...from the perspective of the client of an interface, default methods should be
indistinguishable from “regular” interface methods. The default-ness of a method,
therefore, is only interesting to the designer and implementor of the interface.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 21 /23

http://stackoverflow.com/questions/28681737/java-8-default-methods-as-traits-safe

Interfaces and Traits

The Java SE 8 language rules enhancements have changed the nature of interface construct.
An interface with default methods (which may contain no abstract methods at all) is what now
can be called a trait — a unit in a programming language type system, which may be stateful

(have fields, like in Scala), or stateless (like in Java; Rust has an interesting hybrid model).

What is trait?

More precisely, a trait is a collection of methods that implement behaviour to a class, defined
from the component traits; the trait mechanism requires that the thus defined class implements a
set of methods that parameterise the behaviour. The key point here (which makes the crucial
distinction from a plain inheritance-based class definition model like Java's) is algebraic trait
composition rules in a class definition. The traits featured in a class definition can be:

combined — a symmetric sum rule
overridden — an asymmetric sum rule
expanded — an alias rule

excluded — an exclusion rule

© 0 0 o

These rules can be implemented at the syntax level as value type operators, similar to set theory
operations or Boolean Calculus. For example, the symmetric sum can be represented by the
operator &. Java can emulate all but the exclusion (removing a method from inheritance; a child
class can always access a method defined in an implemented interface/trait). An example of such
emulation can be found in Oracle’s Java Tutorial Default Methods,

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 22/23

http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html#extending

Where to look for this topic in the textbook?

© © 0 o

©

Hortsmann's Core Java for the Impatient, Ch. 3.4-3.6

Oracle's Java Tutorial Lambda Expressions

Oracle’s Java Tutorial List Interfaces

Oracle’'s Java Tutorial When to Use Nested Classes, Local Classes, Anonymous Classes, and
Lambda Expressions

Oracle's Java Tutorial Default Methods

o Maurice Naftalin’'s Lambda FAQ has sections “Fundamentals” and “Advanced Questions”,

which deal with some subtle issues of lambdas, closures and default methods (very useful)
Traits are an alternative attempt at realising the OO programming paradigm in which
problems (related to the standard inheritance) of duplicated features, bloated and
inappropriate hierarchies and member conflicts do not arise. The seminal paper on this
subject is Traits: composable units of behavior.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Functional Interfaces March/April 2017 23 /23

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/list.html
http://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
http://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://www.lambdafaq.org/
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf

