
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Streams

Alexei B Khorev

Research School of Computer Science, ANU

April 2017

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 1 / 13

http://cs.anu.edu.au/courses/comp6700/lectures.html#F4


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 What are Streams?
2 From containers to streams

collections → streams
arrays → streams

3 Generated Streams
4 Stream of Streams and Flat Map
5 From Iterations to Stream Operations
6 Parallel Streams
7 How streaming data can be utilised?

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 2 / 13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Streams

What is a stream?

[Quoting Maurice Naftalin’s Lambda FAQ]

A stream is a sequence of values. The package java.util.stream defines types for
streams of reference values (Stream) and some primitives (IntStream, LongStream, and
DoubleStream). Streams are like iterators in that they yield their elements as required
for processing, but unlike them in that they are not associated with any particular
storage mechanism. A stream is either partially evaluated — some of its elements
remain to be generated — or exhausted, when its elements are all used up. A stream
can have as its source an array, a collection, a generator function, or an IO channel;
alternatively, it may be the result of an operation on another stream. A partially
evaluated stream may have infinitely many elements still to be generated, for example
by a generator function.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 3 / 13

http://www.lambdafaq.org/what-is-a-stream/


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Why Streams?

Iterators are good; they represent a data processing paradigm, yet
They are rather rigid and they do not allow concurrent execution
If data is large, it may be very memory demanding and require more complex algorithms
(out-of-core algorithms, cache-oblivious algorithms etc)
Streams provide an alternative to iterator-based data processing which allow to address some
of those problems
They provide an effective way to include/exclude data elements and transform them via the
meta-operations filter and map
They also allow to limit the number of elements, retain only distinct ones and get them
sorted
They are lazy: they generate values (data elements) upon request instead of storing them all
in memory
Therefore, streams can be only processed once, and do not allow recursive treatment (this
limitation can be circumvented with clever tricks)
Streams can be parallelised (there’re constrains on type of operations)
Data processed in streams can be placed into standard container objects, including
sophisticated selection and grouping

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 4 / 13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stream Creation

If you have a container (form Java’s API), its elements can be readily streamed — the default
method java.util.Collection.stream (and parallelStream) can be called on any list or
other collection object:

// most economical (for memory) reading of a file contents
Path filepath = Paths.get("stephenson_comm_line.txt");
Stream<String> lines = Files.lines(filepath, StandardCharsets.ISO_8859_1));

// can read entire file content into a single string and then break it
String contents = new String(Files.readAllBytes(...);
Stream<String> words = Stream.of(contents.split("[\\P{L}]+"));//split against

//non-letters
// array can be replaced by varargs
Stream<String> song = Stream.of("gently", "down", "the", "stream");

Thus are created streams which give an alternative representation of data residing either inside
(already existing collection objects), or outside (lines of text file) of the program.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 5 / 13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

More Stream Creation
One can convert a collection into an array and back using JFC helper class, java.util.Arrays
and the method java.util.Collection.toArray

T[] array = ...; // T must be chosen
List<T> list = ...;
list = Arrays.asList(array);
array = list.toArray(T[]); // the arg T[] is the array to which elements

// of list will be copied if there is room
// otherwise a new array will be created and
// returned (quirky trick meant to save memory)

Yet, if one has data in an array already, they can be steamed directly:

Arrays.stream(new Integer[] {2, 3, 5, 7, 11, 13}).allMatch(x -> isPrime(x));

Note Java still isn’t very good with literal arrays:

Stream.of({2, 3, 5, 7, 11, 13}).reduce(1, (x,y) -> x*y);
error: illegal start of expression

The situation with literal strings is better, though next slide−→
Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 6 / 13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(Almost) Iterable Strings
Strings cannot be iterated (String does not implement Iterable), like, eg in Python:

def count(hist,c):
hist[c] = hist.get(c,0) + 1
return hist

freqs = reduce(count,"Ministry of Silly Walks",{})

However, through the “default” extension of the interface java.lang.CharSequence, a method
chars() can now be called on a string object directly, generating IntStream stream:

Map<String,Integer> freqs =
"Ministry of Silly Walks".chars() // issuing stream of ints

.mapToObj(c -> Character.valueOf((char)c)) // we need objects!

.reduce(new HashMap<Character,Integer>(), // 1st argument: empty Map
(m,c) -> {m.put(c, m.getOrDefault(c, 0) + 1); return m;},// 2nd: add to it
(m1,m2) -> {m1.putAll(m2); return m1;}); // 3d: merging [parallelised] maps

The reduce second and third arguments deal with an element-by-element accumulation into the
map and (if the stream were parallelised and merged at the end) combining sub-maps. Two more
reduce methods are available in Stream.

There is still considerable price to pay for static type safety!
Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 7 / 13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Computationally generated streams

Streams can be produced by a computation within a program:

Stream<String> echos = Stream.generate(() -> "Echo");

Random rand = new Random();

Stream<Integer> ints1 = Stream.generate(() -> rand.nextInt(200) - 100)

IntStream ints2 = new Random().ints(-100, 100); // primitive type stream
ints2.limit(100).forEach(i -> System.out.printf("%d ", i));

IntStream ints = IntStream.range(1,200); // finally, Java's API has range!

Stream<Integer> peano = Stream.iterate(0, i -> i + 1); // who is Peano?

Stream<BigInteger> integers
= Stream.iterate(BigInteger.ZERO, n -> n.add(BigInteger.ONE));

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 8 / 13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

From Streams to Iterables

The stream raison d’être is to offer an alternative (“streamy”) data processing paradigm to
iterations — the availability of creating streams from collections is natural.

If we want to go the opposite way — create an iterable object using an existing stream? Owing
to a method java.util.stream.BaseStream.iterator (BaseStream is a parent interface to
java.util.stream.Stream), this is possible:

Stream<String> stream = ...;
for (String s : (Iterable<String>)stream::iterator) {

...
}

(the cast (Iterable<String>) is needed because the method reference stream::iterator
requires a target type)

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 9 / 13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Merging Substreams
If we have a text which can be broken into words.

List<String> wordList = ...;
Stream<String> words = wordList.stream();

Define a method which creates a stream of characters extracted from a string (String did not get
a stream extension to generate a stream yet, will it?):

public static Stream<Character> characterStream(String s) {
List<Character> result = new ArrayList<>();
for (char c : s.toCharArray()) result.add(c);
return result.stream();

}

Now, if we map the wordList with characterStream, we shall get a nested stream:

Stream<Stream<Character>> wfts = words.map(w -> characterStream(w));

This may not be what we need (a uniform stream of all characters in the original order). Instead
of using map, we should use flatMap:

Stream<Character> letters = words.flatMap(w -> characterStream(w));

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 10 / 13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Parallel Streams

Some stream operations can be parallelised — a source stream can be split into several “parallel”
streams, each processed independently, and at the end merged to produce the final result when a
reduce-like or a collect-like operation is present as terminal (more on terminal and other type of
ops in F5; terminal ops produce a non-stream value like int, when something is counted/reduced,
or List, or String, when the data are collected or joined).

For a simple problem of counting a sum of streamed int’s (the image on the right is courtesy of
Urma etal Java 8 in Action):

public static long parallelSum(long n) {
return Stream.iterate(1L, i -> i + 1)

.limit(n)
//turns the stream into parallel
.parallel()
.reduce(0L, Long::sum);

}

Correct use of parallel streams which does not result in a worser performance requires some care.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 11 / 13

http://cs.anu.edu.au/courses/comp6700/lectures/F5.pdf
http://cs.anu.edu.au/courses/comp6700/references.html#Java-8-in-Action


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Uses of Streams

1 Stream object(s) created (from data existing in memory or from persistent storage)
2 Streams can have structure, eg stream elements can be streams, too; Streams can be

flattened and merged (concatenated).
3 Streams can be:

processed to remove or retain only part of their elements (filter)
transformed element-by-element (map)
sorted and “uniqued” (sorted, distinct)
collected into standard data containers (list, set, map)
used (element-by-element) to compute a value or values (reduce and collect)

4 Once processed, they are exhausted and cannot be re-used (if you intend to use same stream
more than once, you need create a stream supplier, see F5).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 12 / 13

http://cs.anu.edu.au/courses/comp6700/lectures/F5.pdf


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 8.1, 8.2
Oracle’s Java Tutorial chapter on Aggregate Operations
The java.util.stream package API documentation is succinct and precise (clearly, more
care has been taken of writing Java docs lately ©)
Maurice Naftalin’s Lambda FAQ has a section “Idioms and Techniques”, many entries in
which deal with issues of stream creation, conversion and operations (very useful)
Benjamin Winterberg’s Java 8 Stream Tutorial

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Streams April 2017 13 / 13

http://docs.oracle.com/javase/tutorial/collections/streams/index.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
http://www.lambdafaq.org/
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/

