
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Stream Pipelines

Alexei B Khorev

Research School of Computer Science, ANU

April 2017

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 1 / 28

http://cs.anu.edu.au/courses/comp6700/lectures.html#F5

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Idioms of Stream Processing
filter
map
reduce

2 reduce vs collect
3 Intermediate and Terminal Stream Operations

non-interference
stateless behaviour
side-effects
mutable reduction

4 Lazness
5 Parallel Streams
6 Re-streaming?
7 Breaking out

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 2 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Idioms of streaming data processing

We can speak of streams and collections interchangeably since they can be transformed one into
another, and can be thought as different representations of the same data set, one is eager, and
another — lazy.

There are three idioms — typical operations which are performed on big streaming/collection
data. They all have one feature in common: perform manipulation (“run code”) on each element
of the collection/stream in turn:

1 Filter — create a new stream (collection) which retains (or removes) only those elements
which satisfy a certain condition

2 Map — transform every stream item (element of a collection) into a new one (including a
different type) for further processing

3 Reduce — build up an aggregated value for a property of the whole data set, like sum or
average, or something more complex.

The three idioms can be applied multiple times (repeated filtering, compound transformations), in
variety of combinations (filtering followed by map followed by another map…). A data stream
which initiates from a source, goes through one or many operation stages and ends when a
terminal operation is executed, forms a stream pipeline. Stream pipelines is data processing
technique which is alternative to an external iterator-based traversals.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 3 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Filter

List<Ball> listOfBalls = ...;
listOfBalls.stream()

.filter(b::isRed)

.filter(b -> b.madeOf() == MARBLE)) // can repeat filtering
//.filter(b -> b.isRed() && b.madeOf() == MARBLE)) // or compose them

The method java.util.stream.Stream<T>.filter takes

java.util.function.Predicate<? super T> object, or λ-expression (T t) -> boolean,
or a method reference which returns a boolean value
and returns a java.util.stream.Stream<T>

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 4 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Filter Utilised

Homework 3 revisited: find factors of a given positive integer.

public static Stream<Integer> primes(int n) {
return Stream.iterate(2, i -> i + 1)

.filter(StreamFactoring::isPrime) // or i -> isPrime(i)

.limit(n); // stop at n (iterate would go to infinity)
}

public static boolean isPrime(int candidate) {
int candidateRoot = (int) Math.sqrt((double) candidate);
return IntStream.rangeClosed(2, candidateRoot)

.noneMatch(i -> candidate % i == 0);
}

See the full code (of this short program) in StreamFactoring.java

This is still a wasteful solution since we iterate stream through to every new value which we
check for primality repeating all but the last step which we performed at the previous step. We
shall learn how to get rid of this repetitions later (lazy evaluation and memoization techniques).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 5 / 28

http://cs.anu.edu.au/courses/comp6700/examples/streams/StreamFactoring.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Map

class Brick {
final double l, w, h; // length, width, height with proportions
Brick(Ball b) {

... // calculate length, width, height using size of b and proportions
}

}

listOfBalls.stream().filter(b::isRed).map(Brick::new) // returns stream of bricks

The method java.util.stream.Stream<T>.map takes

java.util.function.Function<? super T, ? extends R> object, or lambda-expression
(T t) -> r, of the type R, or an appropriate method reference
and returns a java.util.stream.Stream<R>

There’re three “specialised” map methods: mapToInt, mapToLong and mapToDouble each taking
an appropriate “to”-function object (java.util.function.ToIntFunction<? super T> and so
on) to produce primitive streams (of int’s, long’s and double’s).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 6 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Map Utilised

Homework 4 revisited: create a list of Student objects by reading their name from a text file, and
assigning them university ID’s using a prescribed scheme:

class Student {
final String firstName, lastName;
final String[] middleNames;
public static long studentCount = 0;
final long id;
Student(String fullName) {

... some processing of fullName to break it

... into name components and assign corresponding name fields
this.id = studentCount++;

}
... // methods recordMarks and setGrade

}

Stream<String> fullNames = Files.lines(pathToFile);
List<Students> students = fullNames

.map(Student::new) // stream of student objects

.peek(s -> s.recordMarks()) // this may query data file or user

.peek(s -> s.setGrade()) // determine student Grade from marks

.collect(Collectors.toList()); // collected to a list

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 7 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reduce

Wall myWall = Stream.generate(() -> new Ball(10.0)) // ∞ stream of balls
.filter(b::isRed)
.map(Brick::new)
.limit(<some-number>) // need to avoid going forever
.reduce(new Wall(40,10), // seed value

(wall, brick) -> {wall.lay(brick); return wall;}, // accumulator
(w1, w2) -> Wall.linkTwoWalls(w1, w2)); // combiner

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 8 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Trump-Reduce

Wall myUsaMexicoWall = Stream.generate(() -> new Ball(10.0))
.filter(b::isRed)
.map(Brick::new)
.limit(<some-number>) // need to avoid going forever
.reduce(new Wall(40,10), // seed value

(wall, brick) -> {wall.lay(brick); return wall;}, // accumulator
Wall::linkTwoWalls); // combiner

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 9 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simpleton’s Reduce

If numbers is a collection (list, set, queue) with numbers, how to:

Sum the numbers Using streams
int sum = 0;
for (int x : numbers)

sum += x;

int sum = numbers.stream()
.reduce(0, (x,y) -> x+y);
//.reduce(0, Integer::sum);

Sum only positive numbers Using streams
int sum = 0;
for (int x : numbers) {

if (x > 0) sum += x;
}

int sum = numbers.stream()
.filter(x -> x > 0)
.reduce(0, (x,y) -> x+y);

Find number of digits in all positive numbers Using streams
int sum = 0;
for (int x : numbers) {

if (x > 0)
sum += x.toString().length();

}

int sum = numbers.stream()
.filter(x -> x > 0)
.map(String::valueOf)
.map(String::length)
.reduce(0, (x,y) -> x + y);

Which is easier to understand? Easier to change or extend?

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 10 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Astute reduce

From Assignment One in 2017: Let’s build a word frequency table. We could use the same
three-argument reduce method which is featured in the “Trump Wall” example, but we can have
an empty table created beforehand, and use the terminal forEach method to insert every stream
element in the (word frequency) table (sounds like mutable closure, right?):

Map<String, Integer> freqTable = new HasMap<>(); // remove RHS if reduce used
Files.lines(entry, StandardCharsets.ISO_8859_1) // stream of lines

//.reduce(new HasMap<String, Integer>(), // seed value
// (m, line) -> {processLine(m, line); return m;}, // accumulator
// (m1,m2) -> {m1.putAll(m2); return m1;}); // combiner
.forEach(line -> processLine(freqTable, line)); // simpler alternative

void processLine(Map<String, Integer> m, String line) {
Stream.of(line.split("[\\P{L}]+")) //split against non-letters

.map(String::toLowerCase)

.forEach(word -> m.put(word, m.getOrDefault(word, 0) + 1);)
}

We used a (relatively new) method java.util.Map.getOrDefault which acts the same as get
when a key word is already present in a map (it returns the corresponding value), but when the
key is missing, it returns the value given by the second argument. How short is the solution of a
large part of Assignment One, no?

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 11 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Astute reduce collect

And this is how it’s done when mutability is treated as friend:

Map<String, Integer> freqTable =
Files.lines(entry, StandardCharsets.ISO_8859_1) // stream of lines

// split the line into words, turn the array into stream, normalise
.flatMap(line -> Stream.of(line.split("\\s+")).map(Word::normalise))
.collect(Collectors.toMap(

Word::toString, // extract content of the word
w -> 1, // just another count of a given word
(c1, c2) -> c1 + c2));

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 12 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collecting Results of Stream Processing
reduce methods may be not the best way to obtain results of stream data processing. Often
collect and its variant provide a better alternative, or a supplementary treatment. The main
consideration (apart from usability of the Stream API for a particular problem) when choosing
reduce or collect is the mutability of the object being created:

canonical application of reduce is when an immutable value is being constructed; Java has
mutability, and reduce can be used to build-up a mutable aggregated object
element-by-element — sometimes it looks unnatural:
Stream<Integer> stream = Arrays.asList(1, 2, 3, 4, 5, 6).stream();
List<Integer> numbers = stream.reduce(

new ArrayList<Integer>(), // initialising the aggregate
(List<Integer> l, Integer e) -> // procedure to build it

{ l.add(e); return l; }, // add element, return handle
(List<Integer> l1, List<Integer> l2) -> { // how to merge

l1.addAll(l2); // two parts of the aggregate if they
return l1; }); // were built in parallel streams

collect methods are added to take advantage of mutability:
List<Integer> numbers = stream.collect(Collectors.toList());

The problem with reduce is not only aesthetic — it cannot correctly work in parallel since the
concurrent modification of the same data structure operated by multiple threads can corrupt this
data structure (one should create a new List each time which is detrimental for performance).

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 13 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collecting and Joining

Stream.collect takes advantage of Java’s mutability in a “natural” way, unlike Stream.reduce
which comes from the functional programming paradigm and is meant to return a new value
every time, but can be “cheated”, which costs some awkwardness — as the two examples from
the previous slide show.

The collect example above used the API helper class java.util.stream.Collectors, which
can be used to build a list, a map and a string object:

"orjner 12vqrf 7 bs znepu".chars()
.filter(c -> Character.isLetter(c) || Character.isWhitespace(c))
.map(Character::toLowerCase)
.map(String2Chars::ceasarShift)
.mapToObj(c -> String.valueOf((char)c))
.collect(Collectors.joining("", "Caesar was warned: ",

", but he didn't heed the warning"));

static int ceasarShift(int c) {
if (!Character.isLetter(c)) return c;
return (c > 'z' - 13 ? c - 13 : c + 13);

}

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 14 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Collector and Collectors

Collecting elements down a stream pipeline can be abstracted further by utilising the class
java.util.stream.Collector which has the interface:

java.util.function.Supplier<A> supplier()
java.util.function.BiConsumer<A, T> accumulator()
java.util.function.BinaryOperator<A> combiner()
java.util.function.Function<A, R> finisher()

through which a collector object can provide all required components of the collect operation.
To use such collector object in a terminal operation, the single-argument collect terminal
method is used. How Collector instances are created (java.util.stream.Collector is an
interface)?

the default method Collector.of(...) makes one four instances above
The utility class javap java.util.stream.Collectors has factory methods:

Collectors.toList() — to build a list
Collectors.toSet() — to build a set
Collectors.toMap() — to build a map (requires keyMapper and valueMapper function args)
Collectors.toCollection() — generalises the above three, takes a supplier which returns a new
collection to be built
Collectors.groupingBy(Function<T,K> classifier) — returns collector to a map of (K,T)
according to classifier (elements T of the stream are grouped by values to which the classifier
maps them; values are used as keys, all stream elements which are mapped to the same value are
collected under the key given by the value)

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 15 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composing Collectors
How can an encapsulated collector be useful? The benefit of such approach is the ability to
compose multiple collectors. This example is from Java Tutorial (assuming that people is a
collection of Person objects with attributes like gender, declared as enum type, name and age):

Map<Person.Sex, List<String>> namesByGender = people.stream()
.collect(// cascading collecting begins

Collectors.groupingBy(// collector to build a map
Person::getGender, // classifier Person->Gender
Collectors.mapping(// values will be maps Name->List<Person>

Person::getName,
Collectors.toList())));// the innermost collecting

Apart from (nested) containers (map with list values), collectors are used to perform popular
“on-the-fly” processing (like statistics) and printable representation:

Double averageAge = people.stream()
.collect(Collectors.averagingInt(p -> p.age));

IntSummaryStatistics ageSummary = people.stream()
.collect(Collectors.summarizingInt(p -> p.age));

Collectors.joining(delimiter, prefix, suffix)
— returns a string representation of the collected aggregate (see an example two slides back,
“Collecting and joining”)
Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 16 / 28

http://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intermediate and Terminal Operations
All stream operations which constitute a pipeline come in two flavours:

Intermediate operations — they return a new stream, and they are lazy, which means that
the operation is not actually carried out “right where it is present” on a pipeline, but rather
that its execution is postponed until a terminal operation which happens last on the pipeline
starts executing; lazy operations only define what will happen to stream elements (kind of a
composed function definition), but the onset of these computations is delayed util a terminal
operation. Laziness has big performance benefits since it reduces (or minimisers greatly) an
intermediate state, and avoids examining data when it is not necessary. Examples:

filter
map and flatMap
peek
sorted and distinct

Terminal operations — they traverse the stream to produce a result or a side-effect; once
the terminal operation is performed, the stream is consumed (you need to return to the
original data source to obtain, “reissue”, your stream to run another pipeline through it).
Almost all terminal ops are eager — they do perform the data traversal and process the
stream elements before returning. Examples:

forEach
reduce
collect
anyMatch (and other "match" ops), findFirst and findAny
count

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 17 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interference with Stream Source

A stream pipeline can be interfered with if a behavioural parameter — one passed to a stream
operation (map etc) — modifies (or causes to be modified) the stream’s data source. Such
modification of a stream source during the pipeline execution may cause exceptions, erroneous
results, or unstable behaviour (when results change every time the pipeline is executed).

Interference should be avoided, but it is not always dangerous: the source can be modified
without harmful effects if such modification takes place before the pipeline terminal operation
starts executing:

List<String> l = new ArrayList(Arrays.asList("one", "two"));
Stream<String> sl = l.stream();
l.add("three");
String s = sl.collect(joining(" "));

This example (taken from the Summary Javadoc for the java.util.stream package in the Java
SE 8 API) should results into s having the value "one two three". It is important to understand
that the actual data processing starts only when a terminal operation begins executing. All prior
statements (obtaining the stream, intermediate operations) are just a lengthy (or not too lengthy)
set-up procedures which determine which data, how and in what order are going to be operated
upon and to what end.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 18 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Side-effects during a Pipeline

Of three way to use a stream pipeline to compute an aggregate value:

using the forEach terminal method
using the three-argument reduce
using the three argument collect

which one is more preferable?

Because the stream pipeline can be processed in sequential as well as in parallel manner, the best
choice is the one which has no side-effects due to behavioural parameters passed to stream
operations. Therefore, a forEach-based approach is not a good choice, reduce may or may not
be side-effects free, and collect is the best option:

List<String> results = new ArrayList<>(); // results exists beforehand
stream.filter(s -> pattern.matcher(s).matches())

.forEach(s -> results.add(s)); // results are "side-affected"

List<String> results =
stream.filter(s -> pattern.matcher(s).matches())

.collect(Collectors.toList()); // No side-effects!

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 19 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Flat Map and Optional
(revisiting F2 discussion) — we need to avoid the bifurcations of value-or-exception in a stream
pipeline operations to maintain the pipe-like (“1D”) data flow. The way to achieve this is to treat
the regular value and the exception as one value — Optional:

To avoid the morass of nested Optionals in a pipeline, let’s realise that Optional can be viewed as
two-element stream; the “optional-of-optional” may be flattened the same way as other nested
streams — with flatMap instead of map:

Example: FlatteningOptional.java

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 20 / 28

http://cs.anu.edu.au/courses/comp6700/examples/streams/FlatteningOptional.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Laziness
A stream pipeline which consists of only intermediate operations is lazy — the pipeline is not
evaluated (since it’s a computation defined but not executed). The example LazyStreams.java
(offered by A. Shipilev in 2012) can be used to demonstrate this.

int[] invocations = new int[] {0,}; // on jshell scalar int would suffice
Stream<String> words = Arrays

.asList("No one expects the Spanish Inquisition".split("\\s"))

.stream()

.filter(s -> {invocations[0]++; return s.length() == 3;});
Iterator<String> iter = words.iterator(); // no terminal op on words so far!
System.out.printf("%d invocations performed%n", invocations[0]);
System.out.printf("does stream have more? %s%n", iter.hasNext());
while (iter.hasNext()) {

iter.next();
System.out.printf("%d invocations performed%n", invocations[0]);

}

Before iter.next() is called once, no operation in the words pipeline gets executed (laziness),
and once it does, it only goes for as long as the stream allows:

0 invocations performed
does stream have more? true
2 invocations performed
4 invocations performed

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 21 / 28

http://cs.anu.edu.au/courses/comp6700/examples/streams/LazyStreams.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stateless vs Stateful, Bounded vs Unbounded Stream Ops
A stream pipeline, depending on which operations constitute it, may or may not have state, which
in turn may or may not depend on the size of the pipeline.

map and filter
use every element from the input stream and produce one or zero to the output
stream; they do not need to store information about stream elements which they’ve
already processed; if the operations (λ or method references) which the user
supplied to them do not have internal mutable state, filter and map remain
stateless — they have no internal state of their own.

reduce, count, sum, allMatch, anyMatch, noneMatch findFirst, findAny, max, min
need to retain information about processed elements; yet their internal state is
bounded, in a sense that it does not grow with the number of processed elements.

sorted, distinct
need to remember previously processed elements to do their job, so they are
burdened with a state buffer which grows with the number of processed elements,
their state is unbounded. The last two groups of stream operations are stateful.

The results of computation may differ for sequential and parallel stateful pipelines (findFirst
produces different results depending on which branch reports the finding first); care is needed in
how those results are used for further computation.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 22 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

External vs Internal Iterator: Burden of Relationship

(Shipilev’s benchmark; reference to A. Langer stream-vs-loop study)

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 23 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sequential and Parallel Streams
Data traversal with explicit for-loops are sequential. Streams have a (designed) advantage —
they can be parallelised: a pipeline can be broken into several parts and processed by different
threads or processes (run on different cores). Parallelisation has to be explicitly requested:

balls.stream().filter(b::isRed).map(Brick::new).collect(...) — serial pipeline
balls.parallelStream().filter(b::isRed).map(Brick::new).collect(...) — a
parallel pipeline; the number of parallel streams is set by the JVM option
-Djava.util.concurrent.ForkJoinPool.common.parallelism=5 (the default value varies,
on a modern laptop it is usually 3)
an existing sequential stream can be parallelised by calling the method parallel()
(extended by the Stream from its parent interface java.util.stream.BaseStream)

Because of laziness, the sequential or parallel processing of a pipeline will be enacted only at the
terminal operation, and even then the sequential or parallel orientation can be changed by calling
BaseStream.sequential() or BaseStream.parallel().

Some terminal ops are non-deterministic (findFirst/findAny), but for others, whether a stream
executes sequentially or in parallel should not affect the result of the computation.

Additional work required in parallel orientation (for reduce/collect, this is the combine
operation) and other factors (intermediate ops like sort() may execute sequentially even in
parallel orientation of the input stream) can diminish advantages of parallelisation. As usual in
concurrency matters, this is all quite subtle.

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 24 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reusing Streams

Streams cannot be reused. As soon as you call any terminal operation the stream is closed. An
attempt to issue a new pipeline from a closed stream will result into the IllegalStateException
thrown.

Stream<Ball> redBallStream = Stream
.generate(() -> new Ball(10.0))
.limit(50)
.filter(b -> b.colour == Ball.Colour.RED);

stream.anyMatch(b -> true); // ok
stream.noneMatch(b -> true); // exception

To overcome this limitation we have to create a new stream chain for every terminal operation we
want to execute, e.g. we could create a stream supplier to construct a new stream with all
intermediate operations already set up:

Supplier<Stream<Ball>> redBallStreamSuppplier = () -> Stream
.generate(() -> new Ball(10.0))
.limit(50)
.filter(b -> b.colour == Ball.Colour.RED);

redBallStreamSuppplier.get().anyMatch(s -> true); // ok
redBallStreamSuppplier.get().noneMatch(s -> true); // ok

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 25 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breaking out of a Stream

How to stop an infinite pipeline when the process which the pipeline has been executing has
attained its goal, eg, the Trump Wall has got built, but the stream of balls (or bricks) keeps
coming?

We will discuss it after the HW6 due date…

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 26 / 28

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Operations Table

The operation table (courtesy of R.G. Urma etal Java 8 in Action)

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 27 / 28

http://cs.anu.edu.au/courses/comp6700/references.html#Java-8-in-Action

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 8.1–8.6, 8.8, 8.9
Oracle’s Java Tutorial chapter on Aggregate Operations
ReductionExamples from the Oracle’s Java Tutorial Code Samples
The java.util.stream package API documentation is succinct and precise (clearly, more
care has been taken of writing Java docs lately ©)
Maurice Naftalin’s Lambda FAQ has a section “Idioms and Techniques”, many entries in
which deal with issues of stream creation, conversion and operations (very useful)
Maurice Naftalin’s talk at JavaOne in Sept. 2016 Journey’s End: Collection and Reduction
in the Stream API.
Benjamin Winterberg’s Java 8 Stream Tutorial (has among others a lucid discussion of how
a stream parallelisation works)

Alexei B Khorev (RSCS, ANU) COMP6700/2140 Stream Pipelines April 2017 28 / 28

http://docs.oracle.com/javase/tutorial/collections/streams/index.html
http://cs.anu.edu.au/courses/comp6700/examples/streams/ReductionExamples.java
http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
http://www.lambdafaq.org/
https://www.youtube.com/watch?v=_rcRzIs4uBw
https://www.youtube.com/watch?v=_rcRzIs4uBw
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/

