COMP6700/2140 Introductory Programming in Java: Course Overview

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

22 February 2017

People

Lecturer	Convenor
Alexei Khorev	Josh Milthorpe
Room N214, Bld. 108	Room N216, Bld. 108

People

Tutor	Tutor
Jason Bolito	Dev Chakraborthy
RSCS Labs	RSCS Labs

Important Links

- Course web site: https://cs.anu.edu.au/courses/comp6700
- Email: comp6700@cs.anu.edu.au
- Consultations and other help: https://cs.anu.edu.au/courses/comp6700/help/
- Schedule of all important events: https://cs.anu.edu.au/courses/comp6700/schedule.html
- Lectures (topics, slides and screencasts):
 https://cs.anu.edu.au/courses/comp6700/lectures
- Labs and homework: https://cs.anu.edu.au/courses/comp6700/labs
- Reading references and other valuable resources: https://cs.anu.edu.au/courses/comp6700/resources.html
- Assignments (available upon release, nothing right now): https://cs.anu.edu.au/courses/comp6700/assignments

Resources

- Lecture slides (available on course website)
- Books
 - Core Java for the Impatient Cay Horstmann
 - Java SE 8 for the Really Impatient Cay Horstmann (not standalone)
 - Effective Java Joshua Bloch
- Online
 - Class forum

```
https://piazza.com/anu.edu.au/spring2017/comp2140comp6700
```

- Oracle Java SE Tutorial
- Oracle Java FX Tutorial
- Waterloo Java Visualizer
 - http://cscircles.cemc.uwaterloo.ca/java_visualize/
- Stack Overflow
- IntelliJ tutorials

5 / 10

Ongoing Activities

- Live Lectures (like this one):
 - two hours on Wednesday, 2pm-4pm, Weeks 1-13,
 - one hour on Friday, 2pm-3pm, Weeks 1-5 and 7-12.

They will be recorded by "Wattle", the links will be added to *Lectures* web page: https://cs.anu.edu.au/courses/comp6700/lectures/

- A few prerecorded short (~20min long) lectures (or, *lecturettes*). They will augment the main material and demonstrate the use of tools. Links to the lecturette videos will be added to *Lectures* web page: https://cs.anu.edu.au/courses/comp6700/lectures/
- Practical classes (labs): two hours in weeks 2-6, 9-12.

Mon 09:00-11:00 Tue 12:00-14:00 (2) Wed 12:00-14:00 Fri 11:00-13:00

To register visit Streams web site: https://cs.anu.edu.au/streams/. The lab exercises will not be marked (you are welcome to discuss them).

- A homework exercise for each lab week; will be presented in person for marking at the lab
 the following week (the labs attendance is not compulsory). Homework exercises 7 and 8 will
 be submitted to a GitLab repository.
- Two larger exercises assignments; released in weeks 2 and 7, due in the mid-semester break and week 12, respectively. Assignment One will be submitted using a simple procedure to Wattle, Assignment Two will be submitted to a *Gitlab* repository.

Examinations and Tests

- Final examination
 - a 3 hour long **lab exam** (containing both practical and theory questions) run in June during the standard examination period.
 - Worth 50% of the total course mark.
 - Samples of a few previous years' exam papers will be made available for you to practice.
- Mid-semester exam
 a shorter (90 minutes) version of the final exam run in week 7 during the scheduled labs
- a shorter (90 minutes) version of the final exam run in week 7 during the scheduled lat
- Quiz
 - a 30-min quiz run in Week 5, redeemable against Question 1 of the Final Exam.
 - The main goal of the Quiz is to help you decide whether to continue the course before the Census date.

Course Marks

- The total mark will be a direct sum of all continuous assessment marks
 - ullet homework exercises, H_1, H_2, \ldots etc

$$H = min(\sum_{i=1}^{8} H_i, 10)$$

assignments:

$$A = A_1 + A_2$$

mid-semester exam(s):

$$M = max(MSE_1, 0.8 * MSE_2)$$

and the final examination mark F:

$$T = H + A + M + F$$

If your T is greater than 49 (after integer rounding), you will pass the course, if it is $45 \le T \le 49$ you will be permitted a supplementary examination.

Plagiarism

Honesty and integrity are paramount.

They are *not* at odds with research and collaboration.

Do be resourceful, collaborate and engage.

Do not represent someone else's work as your own.

Do read the ANU's position on academic integrity

http://academichonesty.anu.edu.au/

This page copied verbatim from Steve Blackburn's COMP1110 slides

Questions?

