
.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

.

......
COMP6700/2140 Input/Output

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

17 March 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 1 / 21

http://cs.anu.edu.au/courses/comp6700/lectures.html#J10

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

I/O streams
From Java Tutorial

An I/O Stream represents an input source or an output destination. A stream can represent many
different kinds of sources and destinations, including disk files, devices, other programs, and
memory arrays.

Streams support many different kinds of data, including simple bytes, primitive data types,
localised characters, and objects. Some streams simply pass on data; others manipulate and
transform the data in useful ways. No matter how they work internally, all streams present the
same simple model to programs that use them. A stream is a sequence of data.

Input Output

A program uses an input stream to to read
data from a source, one item at a time

A program uses an output stream to to write
data to a destination, one item at a time

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 2 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

java.io package
java.io defines I/O in terms of streams. Streams are ordered sequences of data that have a
source (input streams) or destination (output streams). The I/O classes act as front ends to the
specific details of OS, providing access to the system resources through files, peripheral devices
(keyboard, display screen) and other means. Operations which can be carried out over the
streams are provided by in interfaces and abstract classes. Concrete classes (eg Filters) may have
additional methods.

Character Streams (16 bit, for text) and
Readers for input
Writers for output

Byte Streams (8 bit, for data, e.g. images)
Input Streams
Output Streams

Stream are objects of corresponding I/O classes. Depending on the processing task, methods of
the stream class are called, or the object is used as a parameter for a constructor of another
stream, e.g. for filtering or buffering the original stream (see two examples, ByteCounter.java and
UppercaseConverter.java):

// wrapping std input as a character stream
InputStreamReader cin = new InputStreamReader(System.in);

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 3 / 21

http://cs.anu.edu.au/courses/comp6700/examples/io/ByteCounter.java
http://cs.anu.edu.au/courses/comp6700/examples/io/UppercaseConverter.java

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Input to and output from a program

Learning how to read() and write()

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 4 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

I/O Stream Classes

InputStream/OutputStream, Reader/Writer — abstract classes on the top of corresponding
hierarchies. Subclasses must always provide a method that returns the next byte of
input/output — read()/write() (below we shall omit mentioning the byte stream classes).
FileReader/FileWriter — for handling character files.
BufferedReader/BufferedWriter — adds the ability to buffer the input (e.g. readLine()
instead of a single character) and flush the output. A stream with additional capabilities (br)
can be created (Decorator design pattern) from a more basic one (fr) as follows
FileReader fr = new FileReader(args[0]); // args[0] is a file name
BufferedReader br = new BufferedReader(fr);
//a shorter alternative
BufferedReader br1 = new BufferedReader(new FileReader("foo.in"));
FilterReader/FilterWriter — abstract classes, which allow to manipulate (delete, replace) the
stream character. These are examples of abstract classes with all methods implemented.
Subclasses should override some of these methods and may also provide additional methods
and fields.
PrintWriter — a subclass of Writer with a number of overloaded print() and printf()
methods that make it easy to write the values of primitive types and objects to a stream, in
a human-readable text format.
Zip/Jar input/output streams (in packages java.util.zip and java.util.jar) — stream
filters for reading/writing files in the ZIP/JAR file formats. Includes support for both
compressed and uncompressed data (no need to use System to extract or archive, neat!).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 5 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Read-in, process, write-out

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 6 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Methods of Stream classes

read() — reads a character from the stream; returns int; -1 means end of stream
write() — writes a character/string to the stream
readLine() (in BufferedReader) — reads a line
newLine() (in BufferedWriter) — writes a line separator
flush() (in BufferedWriter) — clears the buffer by writing it to the destination stream
print(), println() (in PrintWriter) — converts a value of data (primitives and objects
into a printable form and sends it to the stream
printf() (in PrintWriter) — writes a formatted string to this writer using the specified
format string and arguments; returns reference to this instance of PrintWriter
skip(long n) (in BufferedReader) — skips n characters
reset() — resets the stream (repositions it to point marked by mark(), or to the beginning)
close() (in BufferedWriter) — flushes the buffer and closes the stream (when writing to a
file, it is safer to close() and save the content)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 7 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Formatted Input Stream

Problem: Process a formatted input — read an input text stream, organised line-by-line as a
series of fields by breaking the lines and using each field accordingly.

The StringTokenizer class from java.util package is useful for
processing formatted input. It breaks the input (when reading from
a file line-by-line) into substrings which can be processed according
to specified format. E.g. data from a file with astronomical records
(fields) on every line including:

starName
catNum
class
coor1,coor2,coor3
luminosity

are read, parsed and then star objects created and added to a
catalog.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 8 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

String Tokenizer (old hat)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 9 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

String Tokenizer (deprecated)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 10 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Alternative to Tokenizer

Forget StringTokenizer — it is deprecated!

StringTokenizer is a legacy class that is kept for backward compatibility, but its use is discouraged
in new code. A better way to exercise the same functionality by using the split() method of
String.

// "\\s" is a regex for any number of WS characters
String[] result = "this is a test".split("\\s");
for (String str: result)

System.out.println(str + " has " + str.length());
output:
this has 4
is has 2
a has 1
test has 4

Note: apart from StringTokenizer, java.io package has StreamTokenizer, which can recognise
identifiers, numbers, quoted strings, and various comment styles. It is specially designed to
process the text code for languages like Java and C. Unlike java.util.StringTokenizer,
java.io.StreamTokenizer is not deprecated, it can be still quite useful.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 11 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Using String.split()

ArrayList<Star> stars; // a star catalog
BufferedReader input = new BufferedReader(new FileReader(catalog.txt));

String starName;
int catalogNumber;
char starClass;
Coordinates coor;
double lum;
String line = input.readLine();
String[] tokens;
while (line != null) {

tokens = line.split("\\s"); // assume that number of tokens is
starName = tokens[0]; // the same for every line
catalogNumber = Integer.parseInt(tokens[1]);
starClass = tokens[2].charAt(0);
coor = new Coordinates(tokens[3]);
lum = Double.parseDouble(tokens[4]);
star = new Star(<all the collected values>);
stars.add(star);
line = input.readLine();

}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 12 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Scanner : the Great Simplifier

Scanner class combines the facilities of InputStreams, StringTokenizer and Regex classes to break
down formatted input into tokens and translating individual tokens according to their data type.
Scanner is not a stream (more like a Tokenizer), but it must be closed to indicate that it’s
finished with the underlying stream. The stream breaking is done in accordance with delimiter
pattern (default is whitespaces, see Character.isWhitespace(char c)). The following example
is taken directly from API documentation:

String input = "1 fish 2 fish red fish blue fish";
Scanner s = new Scanner(input).useDelimiter("\\s*fish\\s*");
System.out.print(s.nextInt() + " ");
System.out.print(s.nextInt() + " ");
System.out.print(s.next() + " ");
System.out.println(s.next());
s.close();

with the output (as you might expect)

1 2 red blue

Scanner allows to process input in accordance with specified Locale. The Scanner interface is
quite big, but even the use of a small part of it can simplify your code substantially. Read API.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 13 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Regular Expression for Scanner

When a Scanner object scanner is created, the call to scanner.next() will return the next token.
The default taken is a word (something which has whitespace in the front and at the end), but
this can be changed.

the example on the previous slide changes the separator between tokens.
scanner.useDelimiter("(?m:ˆ$)"); – tokens are now paragraphs (separated by empty
lines).
scanner.useDelimiter("\\A"); – read the whole file (less useful now in view of NIO, se

below).
more examples

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 14 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Scanner is AutoCloseable

If an object implements java.lang.AutoCloseable — this means that when such an object is
created inside try-with-resources block, it will destroy itself automatically when the block is exited
(more discussion of try-with-resources is in P6 “Exceptions”). This is a simple example (courtesy
of Jay Sridar blog on DZone) of how one can count words is a file:

try (Scanner scanner = new Scanner(new File(filename));) {
int nword = 0;
while (scanner.hasNext()) {

String sent = scanner.next();
nword++;
System.out.printf("%3d %s%n", nword, sent);

}
}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 15 / 21

https://dzone.com/articles/java-scanner-text-parsing-made-easy

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

File Class and Directory Browsing

Doing the OS work from within a Java program

An application can interact with the underlying operating system. Often such interaction involves
elements of the file system — files and directories. An application may require reading, writing
and executing files, finding files, establishing and changing file attributes, deleting files etc. As
usual, Java must do this in the OS-neutral way, without using OS-specific commands and
file-system properties. This type of problems are dealt with with help of File class and a set of
global configuration values called properties (which include system properties).

A File object is virtual proxy for an underlying OS file; it allows to find out everything about a file
and perform a number of operations on it:

name (getName()) and path (getPath())
mode (canRead(), canWrite(), canExecute())
status (exists(), isDirectory(), isHidden() etc)
size (length())
create, rename and delete (createNewFile(), renameTo(), delete())
list directory content (list(), listFiles())

and some others. As an example, this is how we can list a directory content for files which end
with the chosen suffix (from examples DirectoryLister.java).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 16 / 21

http://java.sun.com/docs/books/tutorial/essential/environment/properties.html
http://cs.anu.edu.au/courses/comp6700/examples/io/DirectoryLister.java

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Example: Directory Listing from Within Java

import java.io.*;
import java.util.Properties;

class DirectoryLister {
public static void main(String[] args) {

String suffix = args.length < 1 ? "" : args[0]; // no "final"!
//run-time directory name (different on different OS platforms)
String cwdName = System.getProperty("user.dir");
File cwd = new File(cwdName); // cwd is File object standing for directory
if (cwd.isDirectory()) {

System.out.println("The directory contains:");
for (File file: cwd.listFiles((f,n) -> n.endsWith(suffix)))

System.out.printf("%s: %d\n", file.getName(), file.length());
}

}
}

Aside note: this is how it’s done with Unix’s command-line Smiley:

abx% ls -l *.suffix | awk '{ print $9": " $5 }'

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 17 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Java’s New I/O

Since Java 7, API offers substantial improvements in dealing with I/O (called NIO.2):

The class File from java.io allows full management of the file system — navigate the file
hierarchy, establish file attributes, delete and rename files, link and unlink and so on.

But it works inconsistently across platforms e.g. handling of symbolic links; it does not always
throw exceptions when expected, and has problems with synchronization (the file tree could
change in the course of program execution, which would cause problems with navigating it via the
absolute path).

The new class java.nio.file.Path addresses these problems. NIO.2 also provides support for
manipulating hard and soft links, controlling file attributes, and file change notification (when the
application needs to detect and react to events of file system modifications) — instead of using
polling mechanism with the old API, it is now possible to use a far simpler event-driven approach.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 18 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

File Operation Support in NIO.2

Foundation classes / interfaces of the java.nio.file package include:

Path — replaces java.io.File, includes methods to obtain information about the path, to
access elements of the path, to convert the path to other forms, or to extract portions of a
path. There are also methods for matching the path string and others.
Paths — utility class with methods to return a path
FileSystem — factory class that for objects in the filesystem
FileSystems — utility with methods to access local or remote filesystems
WatchService — utility class to detect file system changes through event notification; this
allows event-driven programming style (which results in significant simplification)
Files — utility class to create, rename, copy and delete files, changing their attributes etc
(provides better support for atomic operations then java.io.File)

Files class supports navigating a full directory tree. It allows a program to easily search for files
in a directory tree (including all nested directories) and perform operations on them as required
e.g. delete those matching a pattern, copy, etc. The “magic” method is:

Files.walkFileTree(Path startingDir, FileVisitor<? super Path> visitor);

where the FileVisitor interface allows to program the perform particular operations on every
traversed file or directory.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 19 / 21

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

NIO.2 Examples

NIO.2 offers simpler ways to work with files e.g. read / write, move from one location to another,
copy, or delete.

List<String> lines = Files.
readAllLines(Paths.get("file_to_read_from.txt"), StandardCharsets.ISO_8859_1);

for (String line : lines) {
<if line matches a pattern, process and/or replace it>

}
Files.write(Paths.get("tmp.txt"), lines, Charset.forName("UTF-8"));
Files.copy(Paths.get("tmp.txt"), Paths.get("installed_packages.txt"),

StandardCopyOption.REPLACE_EXISTING);

See example FindAndReplace.java

Some other useful java.nio.file.Files class methods:

Files.deleteIfExists(Paths.get("foo.txt")) — returns true if deleted
Files.delete(Paths.get("bar.txt")) — deletes a file or throws exception

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 20 / 21

http://cs.anu.edu.au/courses/comp6700/examples/io/FindAndReplace.java

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Further Reading

Hortsmann Core Java for the Impatient, Ch. 9.1, 9.2
Oracle The Java Tutorials: Basic I/O

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Input/Output 17 March 2017 21 / 21

http://docs.oracle.com/javase/tutorial/essential/io/index.html

