
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Data and Types

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

February 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 1 / 20

http://cs.anu.edu.au/courses/comp6700/lectures.html#J2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Types and literals
2 Primitive types
3 Objects and references
4 Arrays
5 Strings

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 2 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Types and Literals — 1

Computer programs operate on values which are sequences of bits. These values can be
represented as symbols (variables or constants), or as literals. Symbols must be declared with a
type. The type determines the number of bits representing a given symbol in memory and how
these bits are interpreted (its value). Java has primitive types and references.

Each type has literals (set of constant values of this type).

Java is a strongly typed language — every symbol must have a declared type.

The eight primitive types:

boolean (1-bit, true/false)
byte (8-bit signed, range -128 ... +127)
char (16-bit unicode, character symbols from Unicode Table)
short (16-bit signed, range -32768 ... +32767)
int (32-bit signed, range -2,147,483,648 ... +2,147,483,647)
long (64-bit signed range -9,223,372,036,854,775,808 ...
+9,223,372,036,854,775,807)
float (32-bit floating-point number)
double (64-bit floating-point number)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 3 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Range of Primitive Values

Each primitive type can hold values within a certain range.

byte, short, integer and long are signed (their range includes negative values from -2bitsize -1to
+2bitsize -1-1 — one bit is used for the sign, +/-). For instance, the int values change from
-2,147,483,648 to +2,147,483,647.

Floating point types (float and double) include subsets of approximations to real numbers from
very small to very large (discussed in greater detail later).

bit — a single binary digit with one of two possible values, 0 and 1
byte — the unit of data consisting of eight bits
word — the unit of data used by a particular processor design (handled as a unit in the
processor instruction set); modern general purpose computers have either 32- or 64-bit words

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 4 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Types and Literals — 2

public class PrintNumber { // usage of the primitive type variables
public static void main(String[] args) {

int i = 90000; short s = 20000; // one can have 2 statements on one line
byte b = -100; double d = 1.5; // but normally it's not good for readability
long l = 4000000000L; // note the `L` here
float f = 1.5f; // note the f here
char c = 'a'; boolean bn = true;
int i2; i2 = -90000; // delayed initialisation
System.out.println("The value of s is " + s); // display the value

}
}

Java variables are statically typed: first declare a variable and then assign it a value.
Declaration and assignment can done in the same place, or assignment can be postponed.
L or l suffix for long integers, and F or f suffix for floats. To avoid confusing the long type
flag “l” and the literal value 1, use only the upper-case “L”.
Range of values is independent of platform, unlike, eg, for C/C++ .
Integer constants (literals of byte, short, integer and long) are strings of either decimal, octal
(leading zero, 010) or hexadecimal (0xCAFE) digits. Octal format isn’t recommended
(confusing syntax!): (decimal)13 = (hexadecimal) 0xD = (binary) 1101. The 2-byte hex
literal 0xCAFE if treated as a 32-bit int is 0000 0000 0000 0000 1100 1010 1111 1110
(binary) = 51966 (decimal), but if treated as a 16-bit short is 1100 1010 1111 1110 (binary)
= -13570 (decimal).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 5 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Floating Point Numbers

In scientific notation, we commonly represent numbers in terms of a significand and an exponent:
x = α · 10β , for example,

mass(Earth) = 5.97 · 1024 kg.

In a similar way, real numbers can be represented on a computer in terms of a binary significand
and an exponent of base 2: x = α · 2β .

The decimal point ‘floats’ left or right so that there is only one digit in front of the point. For all
non-zero numbers, the first digit is a one. The exponent determines the magnitude of the number.

(binary) 1101 = 1.101 · 1011 ↔ (decimal) 13 = 1.625 · 23

Floating point numbers of a fixed size (float = 32 bits; double = 64 bits) cannot represent all real
numbers within their range. Some numbers have an exact representation, but most numbers
must be approximated.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 6 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Floating Point Numbers (2)

For FP literals either decimal or hexadecimal format is used:
18.=1.8e1=.18E2=180.0e-1 — decimal point is optional; e or E is optional, and if used is followed
by optional signed integer
0x12p0=0x1.2p4=0x.12P+8=0x120p-4 — the binary exponent, p or P, is mandatory; it’s followed by
an optionally signed integer; the exponent represents scaling by two raised to a power (the shown
number is decimal 18.0)

float has ~7 decimal digits of precision, the trailing suffix “f” is mandatory. double has ~16
decimals of precision, the trailing suffix “d” is optional. Normally, use double unless you have
a good reason.
FP literals include two zeros, 1d * 0 = 0.0 (positive) and -1d * 0 = -0.0
(negative); 0.0==-0.0 evaluates to true, but some expressions evaluate to different values:
1d/0.0=∞, yet 1d/(-0.0)=−∞
64-bit IEEE 754 standard stipulates the number of bits used for significand and exponent: 52
and 11 (plus one bit for the sign +/-). There are special floating point values:

1 NEGATIVE_INFINITY, POSITIVE_INFINITY, MAX_VALUE, MIN_VALUE (to denote overflows
and underflows)

2 NaN, “Not a Number” (examples: 0/0,
√
−1), Float and Double classes provide a method isNaN()

to test a FP value. NaN is the only value, for which x == y evaluates to false if both double’s x
and y are equal to NaN.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 7 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Types and Literals — 3

Numeric literals of “difficult” integer types can be (since Java SE 7) created using notations
which are more readable for humans:

Numeric constants (that is, one of the integer primitive types) may now be expressed as
binary literals
int x = 0b1100110;

Underscores may be used in integer constants to improve readability:
long anotherLong = 2_147_483_648L;
int bitPattern = 0b0001_1100_0011_0111_0010_1011_1010_0011;

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 8 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Type Compatibility
A variable of one type may be assigned a value of a different type:

long m; int n = 2; m = n;

This is a type conversion: int→ long.

Java is a strongly typed language — it checks for type compatibility at compile time in almost all
cases — all “fishy” assignments are forbidden. To allow assignment of types with compatibility
only known at run time, or to explicitly force conversion for primitive types that would otherwise
lose range (double → float), Java provides the cast operator: var1 = (type1)var2;

A “narrower” type, represented by a fewer number of bits, is implicitly widened, cast is not
required
A “wider” type must be explicitly narrowed to control the change of value: (“high” bits are
chopped off).

The explicit cast is also needed if two types use an equal number of bits, but their memory
layout is different, e.g. conversion double → long requires a translation from a 64-bit
floating-point value to the 64-bit integer representation (depending on the run-time value,
information may be lost, hence the cast).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 9 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Type Conversions and Casts — 1

Hierarchy of widening and narrowing conversions

a → b means that a variable of the type b is assigned a value held by a variable of the type a;
widening is an implicit type conversion, cast isn’t needed since the doesn’t change;
narrowing needs the explicit cast (because the value can change of assignment).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 10 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Type Conversions and Casts — 2

Casts (including the effect of losing the fractional parts of floats) are illustrated by the following
code:

public class ConversionTest {
public static void main(String[] args) {

int i1 = 10;
float f1 = i1;
double d1 = i1;
double d2 = 1.5;
float f2 = (float) d2;
int i2 = (int) d2;
// call print method to display the values

}
}

Add printing statements for all the variables involved, compile and run this code to see the values
generated by conversion.

What do you get when you print the value of i2?

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 11 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conversion, Rounding and Finite Precision

What is the value of n below?

double f = 4.35;
int n = (int) (100 * f);

System.out.println(n); // prints 434: Wrong!

What’s wrong? In the binary number system, there is no exact representation for the number
4.35, it is actually stored as 4.349999999... so 100 * f = 434.99999... (etc).
When cast to an integer, the fractional component is dropped (not rounded!), thus n = 434.
The proper way to do rounding is to use a function call from the Math class:
double f = 4.35; int n = (int)Math.round(100 * f);
System.out.println(n); // prints 435! (Good)

Rounding errors are a fact of life with floating point numbers.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 12 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conversion, Rounding and Finite Precision

What is the value of n below?

double f = 4.35;
int n = (int) (100 * f);

System.out.println(n); // prints 434: Wrong!

What’s wrong? In the binary number system, there is no exact representation for the number
4.35, it is actually stored as 4.349999999... so 100 * f = 434.99999... (etc).
When cast to an integer, the fractional component is dropped (not rounded!), thus n = 434.
The proper way to do rounding is to use a function call from the Math class:
double f = 4.35; int n = (int)Math.round(100 * f);
System.out.println(n); // prints 435! (Good)

Rounding errors are a fact of life with floating point numbers.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 12 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characters

Characters are represented by primitive type char.
Strings are not characters — strings are instances of the class String. But it may help to
think of them as sequences of characters (which is what they are in term of values).
Character literals appear between single quotes: 'a', string literals appear between double
quotes: "a" ('a' and "a" are literal values of different type!).
The character literals can be expressed either by a single symbol, or by an escape sequence
inside the pair of single quotes, including an octal character constant (\ddd, where each d is
one of 0-7, but the code cannot exceed \377).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 13 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unicode

char literals are what you can find in the Unicode character table (used to be — and still is
for C — the plain old ASCII with 128 entries; not for Java!): characters (Latin and other
scripts), digits and many special symbols.
Any valid Unicode character can be represented using ASCII symbols only with an escape
sequence \uxxxx, where x is a hexadecimal digit (0,…,F). The number of u symbols can be
more than one. (BTW, the Unicode character mapping escape sequence can be used
anywhere inside Java code as a part of an identifier, not only in char and String literals).
Here is a portability problem for Java: despite you can manipulate all Unicode characters in
your code, you may not be able display them because many terminal and other output
devices are yet to adopt the Unicode standard.
Some special ASCII characters:

\n = \u000A (new line)
\t = \u0009 (tab)
\\ = \u005C (backslash)

Try printing \a (bell), what happens? (Hint there is no literal constant for it, one has to use its
unicode value, \u0007).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 14 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Arithmetic on Chars

Two chars can be added together — careful!

first they are converted to ints (ie, the characters are replaced by their code values)
then the sum is calculated and the result value is also int
to get the character back, this sum should be cast back to char: char c = (char)(a + b).

This also works for other arithmetic operations — try it!

Study these programs:

CharTest.java
CharTest1.java
CharTest2.java

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 15 / 20

http://cs.anu.edu.au/courses/comp6700/examples/basics/CharTest.java
http://cs.anu.edu.au/courses/comp6700/examples/basics/CharTest1.java
http://cs.anu.edu.au/courses/comp6700/examples/basics/CharTest2.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Primitive Data Types

As well as primitive types, in an object-oriented language like Java, there are… objects.

objects are composed of (potentially) several items of data called fields, which can be
primitive values or references to other objects
objects can also have operations associated with them called methods
objects can be introduced into a program as literal values (e.g. literal strings like "Java has
become trendy again"), but more commonly they are represented by references which are
declared to have a particular type

The objects (of any type/class) are collectively referred to as reference type data.

The literal null is a special reference literal; it represents an invalid or uninitialized object. null
does not have a type of its own, but it can be cast to any reference type.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 16 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Arrays
An array is special reference type, representing an ordered collection of data elements indexed by
an integer from 0 (first element) up to length - 1. All elements have the same type.

The declaration and instantiations can be done differently:

//standard instantiation with elements set to default values
int[] ia = new int[3];
// creation of an array with initialisation of its element values (no new!)
int[] ia = { 2, 3, 5, 7, 11, 13 };
// next C-like syntax is also legal, but don't do it!

int ia[] = { 2, 3, 5, 7, 11, 13 };
// as above, but note absence of the array size! (array size is inferred)
int[] ia = new int[] { 17, 19, 23, 29, 31, }; // last comma is optional

Dimension of the array variables in the type declaration is omitted. The symbol new is the
creation operator (used when an object is created). When it’s called, an array is instantiated (ie,
an array object is created) and its dimension is set. As every reference, ia can be later assigned
to a different array of a different size (example ArrayTest.java).

arr[i] returns the i-th element in the array arr, and str.charAt(i) returns the character
at the i-th position.
An arrays has the length field which tells you how long it is (ie, how many elements it
contains)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 17 / 20

http://cs.anu.edu.au/courses/comp6700/examples/basics/ArrayTest.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Strings

String is another special reference type, representing a string of text. A value of the String type
— a literal string — is created inside the program as a sequence of characters enclosed in the
matching pair of double quotes (the double quotes are NOT part of the string data).

All string literals in Java programs, such as "abc", are objects of the class String, which is a part
of the Java standard library (Java SE API). Strings are immutable (constant) — their values
cannot be changed after creation.

String str1 = "abc"; // using a literal string to initialise a variable
char data[] = {'a', 'b', 'c'};
String str2 = new String(data); // using String class constructor
System.out.println(str1.equals(str2)); // testing equality of two strings
// should print "true", the objects str1 and str2 are identical
// But, str1 and str1 references were independently assigned, therefore
System.out.println(str1 == str2); // should print "false"

Characters which make up a string object can be read by using the method
somestring.charAt(i), where the index i is the position of the character inside the string
(left-to-right, the first character has index 0!).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 18 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

String Methods

The operations we just saw performed on strings — (str1.equals(str2)) and
(somestring.charAt(i)) — are methods which can be invoked on a string object. Methods are
operations which objects are programmed to perform.

Methods are characterised by a name followed by a pair of parentheses which may or may not
include literal values or variable names in a form of a comma separated list — these are method
(actual) parameters, they are used in carrying out the computation which method represents.

The String class includes methods for examining individual characters of the sequence, for
comparing strings, for searching strings, for extracting substrings, and for creating a copy of a
string with all characters translated to uppercase or to lowercase, etc (string operations are
important, and String is a large class).

System.out.println("abc"); String cde = "cde";
System.out.println("abc" + cde); String c = "abc".substring(2,3);
String d = cde.substring(1, 2);
char c1 = cde.charAt(0);

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 19 / 20

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Further Reading

Cay Hortsmann Core Java for the Impatient Ch. 1.2, 1.5

David Goldberg What Every Computer Scientist Should Know About Floating-Point Arithmetic
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Josh Haberman Floating Point Demystified
http://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html

Henry S. Warren Hacker’s Delight 2ed, Addison-Wesley, 2013, ISBN-13: 987-0-321-84268-8
http://www.hackersdelight.org/

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Data and Types February 2017 20 / 20

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html
http://www.hackersdelight.org/

