
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Names and Values

Alexei B Khorev and Joshua Milthorpe

Research School of Computer Science, ANU

February 2017

Alexei B Khorev and Joshua Milthorpe (RSCS, ANU) COMP6700/2140 Names and Values February 2017 1 / 8

http://cs.anu.edu.au/courses/comp6700/lectures.html#J3


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Names as Symbols of Data
2 Declaration of Names
3 Initialisation
4 final variables and (Im-)Mutable Objects

Alexei B Khorev and Joshua Milthorpe (RSCS, ANU) COMP6700/2140 Names and Values February 2017 2 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Declaration

Variables of char, int, double, String and an array type, discussed above, are just names which
determine storage locations, “boxes” in which one can “place” a value of the right type (can fill
in), then swapped with another similar typed value and so on (assign and reassign a value of the
correct type). Variables can appear as: class fields, local variables inside a block of code, and
method parameters.

Variables are introduced as program’s entities through declaration:

[@annotation-type] [modifier]* type identifier

where (let’s ignore @annotation) modifiers are optional and possibly a few (like private
static final), type is necessary (it determines the size of allocated memory and the behaviour
of declared entity), and identifier is the variable name. The declaration is often accompanied
by initialisation (assigning a value for the first time), or the initialisation can be performed later in
the code. The variables of the same type can be declared in a comma separated list, but the
variables of different type must be declared in separate statements.

float x, y; // declared but not initialised
int z, u = 2; // two declared, one initialised

Alexei B Khorev and Joshua Milthorpe (RSCS, ANU) COMP6700/2140 Names and Values February 2017 3 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Initialisation

A variables must be initialised before it can be used (except for formal method parameters).
Once a variable is initialised, its value can be used in expressions or assignments.

int x; //not initialised, cannot be used
int y = 10;
x = y * y; // now x has a value
int z = x; // now x can be used and given a new value

Field variables are declared inside the class definition. Non-static fields exist during the life of an
object to which they belong. If not initialised explicitly, they are given the default values when
the object is created.

class MyClass {
int x; // default value 0
static double y = 10.0;

}

Alexei B Khorev and Joshua Milthorpe (RSCS, ANU) COMP6700/2140 Names and Values February 2017 4 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-field variables

Local, or block, variables are declared anywhere inside a block (method’s body is an example);
unlike field variables, local variables must be initialised explicitly before they can be used; they
cease to exist when the flow of control (the computation path which the program execution goes
through) reaches the end of the block or method body in which they were declared. Local
variables can have only one modifier, final.

Parameter variables are the parameters declared in methods, constructors or catch clauses of the
try-catch-finally blocks. A parameter declaration includes an optional modifier (an
@annotation or final), type and an identifier (parameter’s name). During a method declaration
or its invocation in the bodies of other methods, the method variable is a formal parameter (it
has no value), but during the actual invocation of the method, it is an actual parameter (it must
have value). Parameter variables cease to exist when their method completes (by reaching its
logical end, or terminating with error).

Alexei B Khorev and Joshua Milthorpe (RSCS, ANU) COMP6700/2140 Names and Values February 2017 5 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constant variables

An initialised variable can be thought as an association between a name and a value. This
association can change — a variable can be assigned another value during the lifetime unless it
was declared final. final variables are constants:

constant as values for primitive type variables,
constant as reference for reference type variables,
constant as values for immutable reference type variables.

An attempt to change the value of a final variable will result in a compile error:

final int x; // if not initialised during the declaration,
// the final variable is a blank constant

x = 2; // ok, now the constant x is given a value
x = 4; // can't do!

final variables are normally initialised immediately after declaration. One can postpone the
assignment, but modern IDEs issue a warning in such case. Such blank finals are mostly used if
the field value is determined by the constructor arguments (example next slide).

Alexei B Khorev and Joshua Milthorpe (RSCS, ANU) COMP6700/2140 Names and Values February 2017 6 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Immutable of objects

final variables of a reference type are not to be confused with references to immutable objects:
the former cannot be reassigned, but the object to which the variable is assigned to, can change
its state if it is mutable. An immutable object (like string) cannot change their state, but a
non-final variable assigned to this object can be reassigned to another object (of the same type).

Strings are example of immutable objects — manipulations with their content involve creation of
a new String object with modified value (like substring()).

class Student {
final String name; //below is the Student class constructor
Student(String name) { this.name = name; }

}

Alexei B Khorev and Joshua Milthorpe (RSCS, ANU) COMP6700/2140 Names and Values February 2017 7 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 1.3, 1.5

Alexei B Khorev and Joshua Milthorpe (RSCS, ANU) COMP6700/2140 Names and Values February 2017 8 / 8


