
.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

.

......
COMP6700/2140 Control Flow

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

3 March 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 1 / 16

http://cs.anu.edu.au/courses/comp6700/lectures.html#J7

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Control Flow: if-else

We often want to execute different code paths depending on the data. For boolean conditions,
use the if-then-else statement with the syntax:

if (b) // b is a boolean expression
statement_1;

else // this part is optional, it covers all logic alternatives to b, !b
statement_2;

For more complex cases of logical alternatives the extended form if-[else if]*-else is used:

if (b1)
statement_1;

else if (b2)
statement_2;

else if (b3)
statement_3;

else // the remaining alternatives go — !(b1 � b2 v b3)
statement;

Branches are old hat: modern languages (Elixir, Rust) use match statements to achieve the same
result but in more expressive manner.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 2 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Dangling else (Source of Logical Errors)

Conditionals can nest: if-else statement can be a part of a statement_i. One should be
careful to avoid the dangling else error when a conditional statement is executed at the wrong
level (see a complete example in DanglingElses.java)

if (richter >= 0)
if (richter <= 4)

System.out.println("The earthquake is harmless");
else // pitfall! This is a part of inner if-statement
System.out.println("Negative value not allowed");

Don’t rely on indentation — Java is not Python; use braces {...} even when the statement is a
one-liner;

To create an expression which depends on a condition, use the ternary operator:

courseCode = undergraduate ? "COMP2140" : "COMP6700";

When nesting gets three and more level deep — consider code refactoring. If a condition is written
as complex boolean expression (involving three or more operands) — also consider refactoring.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 3 / 16

http://cs.anu.edu.au/courses/comp6700/examples/basics/DanglingElses.java

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Control Flow: switch

If there are too many else-ifs in a situation when the boolean expression is an equality test for
integer values, int_expr==valuei, i=1,2,…k,, the switch statement can be used:

int var = int_expr; //can be number type, or Enum (and String in JDK 7)
switch (var) {

case value_1: //this is a statement label
statement_1; // label is just a label, not a condition for execution!
break; // to prevent execution of default_statement

case value_2: case value3: ...
statement_23; // multiple case labels may require the same statement
break;

case value_k: // not all range of values needs to be explicitly checked
statement_k;

default:
default_statement;

// flow control jumps here if no matching case found. default is
// optional: in its absence, the entire switch statement is skipped

}

The case or default labels do not force the break out of the switch, and do not imply the end
of execution of statements. The falling through can be avoided explicitly by break statement, or,
if the switch is used inside a method which returns a value, by return. Some advise not to use
switch, but it may be useful for processing multiple command-line options. For traps of the
control flow falling through in switches see IfTest.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 4 / 16

http://cs.anu.edu.au/courses/comp6700/examples/basics/IfTest.java

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Control Flow: while and do-while

Need to repeat the same statement multiple times depending on a value of the boolean
expression, and the number of repetitions isn’t known in advance (indeterminate loop)? Use
either a while loop:

while (boolean-expr)// if boolean-expr evaluates to true, then execute
statement;

or, to execute the statement at least once, no matter what, use a do-while loop:

do
statement;

while (boolean-expr);

statement (especially in do-while case) is almost always a block.

class WhileDemo {
public static void main(String[] args){

int count = 1;
while (count < 11) {

System.out.println("Count is: " + count);
count++;

}
}

}
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 5 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

while and do-while: Diagrams

Execute zero or a few times until the
loop condition is broken.
while-loops are used ∼100 more
often.

Execute once before examining the loop
condition. May make the programming
logic simpler, yet is equivalent to
while-loop.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 6 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Control Flow: for

When the number of repetitions is known in advance (determinate loop), it can be controlled by
a counter, most often, when the looping is done over a range of values, like an array elements,
from beginning to end, usage of for loop is recommended:

for (init-expr; boolean-expr; incr-expr) // all expressions are optional
statement;

which is equivalent to

{ //mind this block !
int-expr;
while (boolean-expr) {

statement;
incr-expr; // it often has that (in/dec)cremental form i++ / j--

}
}

There is also a simplified form of the for-loop, so called for-each loop (though there is no such
keyword), when iterarion is performed over an collection type object (some sort of container,
details will be in Block 4, arrays are regarded as collections):

for (ElementType var: container) // container can be an array
statement;

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 7 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Control Flow: break and continue

break is often important to control the exit from a loop or a block:

while (years <= 100) {
balance += payment;
double interest = balance * interestRate/100;
balance += interest;
if (balance >= goal) break; //at this moment, while loop is exited
years++;

}
System.out.println("No of years = " + years);

continue: instead of breaking out of the loop, it only skips remaining statements in a current
iteration and goes to the next one.

while (sum < goal) {
String input = ...;
n = Integer.parseInt(input);
if (n < 0) continue;
sum +=n; // not executed if n<0

}

for (count=0; count < 100; count++) {
String input = JOptionPane..........;
n = Integer.parseInt(input);
if (n < 0) continue; //jump to count++
sum += n; // not executed if n < 0

}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 8 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Structured Programming and SE/SE principle
A version of break (and continue) with a label transfers the control flow to the statement
immediately outside the labeled statement. If such statement is a nested block (eg a loop inside a
loop), a labelled break which terminates the innermost block transfers the control flow to the
statement outside the outmost block (one can escape nested loops at once), while an ordinary
(not labelled) break in the inner block merely transfers the control to the next-level block.

label_one:
for (int i = 0; i < 99; i++) {

... break label_one ...
}

When labeled break and continue are used in multi-nested blocks, they violate the basic tenet of
structured programming known as Single Entry — Single Exit principle:

Every block of code must have a single entry point and a single exit point. It should be
impossible to enter or exit such a block in the middle. Entry is at the top, exit is at the
bottom (like in the program text).

Labeled break allows you to exit deeply nested blocks (like double for-loop) from the middle.
This is bad because the enclosing blocks (outer loop) may not know that they are being exited; if
such outer blocks assume that they control their execution and exit (which is normal), this can
lead to errors which will be hard to pinpoint. The example — Labeled.java .

If possible, avoid even simple break and continue.
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 9 / 16

http://cs.anu.edu.au/courses/comp6700/examples/basics/Labeled.java

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Control Flow: return

return statement terminates execution of a method and returns to the invoker.

double nonNegative(double val) {
if (val < 0) return 0; //an int constant, but it's promoted to double
else return val; // a double

}

Even if the methods does not return a value, a simple return; will terminate the method
execution (leaving whatever is left out of execution):

void reportIfNegative(double val) {
if (val < 0) {

System.out.println("It's negative, alright.");
return;

}
System.out.println("This will not be seen if val < 0");

}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 10 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

“Principles” and Practice
All rules and principles of programming (except for very few) should not be followed dogmatically.
Sometime these rules contradict each other, and one has to choose. For example:

a return statement can be used more than once inside a method; it formally contradicts the
(second part of) SESE principle, but this is an acceptable practice used to avoid executing
unnecessary code:

// this method is used in implementation of the quick sort algorithm: it
// determines which one of the three int's --- a, b and c --- is in between
public static int median_of_3(int a, int b, int c) {

if (a < b) {
if (b < c) return b; // stop at once when result is found
else if (a < c) return c;
else return a;

}
else if (a < c) return a;
else if (b < c) return c;
else return b;

}

Since quick sort is used extremely extensively in many(-many) software libraries throughout the
virtual world, exerting the utmost efficiency is of paramount importance. Out of the window flies
the Single Exit (the second half of SESE).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 11 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Why Branches and Loops?

Turing Machine and Universal Computation

Executing branches and making repetitions (often without a priori knowledge how many times)
are the fundamental parts of computation. They are present in a theoretical model of universal
computation known as Turing Machine.

(Picture is courtesy of D. Evans)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 12 / 16

http://www.cs.virginia.edu/~evans/hackerschool

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Computation and Its Model

Courtesy Jin Wicked Simple Turing Machine

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 13 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Finiteness of means when dealing with (potential) infinity

A lovely discussion can be found at What Every Hacker Should Know about Theory of
Computation (don’t be put off by the name “hacker” — this lecture was aimed at a curious
high-scholl student).

Alan Turing analysed the mental process of
computation by ruthlessly simplifying and
removing everything which cannot be described
with complete certainty necessary for
performing the same process by a machine.
Success of this simplification is owned to both
luck and Turing’s ingenuity.

The result is Turing Machine — a
finite-state controller with a finite set of
rules (“program”) which operates on an
arbitrary large data set described by a finite
set of symbols (“alphabet”). The Machine
can solve any problem if that problem has a
solution obtainable in finine number of
steps (the latter is not not garanteed —
“Halting Problem”)

The key point is our (unexplained) ability to understand the infinite reality using a finite
apparatus. Existence (and discoverability) of Laws of Nature provides (indirect) support to the
Church-Turing Thesis.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 14 / 16

http://www.cs.virginia.edu/~evans/hackerschool/
http://www.cs.virginia.edu/~evans/hackerschool/

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Computability, Turing Machine and Loop/Recursions

The Turing Machine is instructed to move the position of its controller unit in accordance
with the program (instruction table stored in the controller) and the data it reads on the
tape. Universal Turing Machine gets its program from the same data tape (before it starts
operation on real data). There is no preprogrammed condition that the Machine should
perform only finite set of operations. Turing proved that it is impossible to determine
whether the Machine will ever stop or go on forever (the Halting Problem)
In practical applications of a computation model is:

a processor (“Turing Machine”)
a program
input data

We have the control — the termination either occurs (IT practitioners work with a subset of
problems where halting and undecidability issues do not occur), or we pull the “switch” (©)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 15 / 16

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Further Reading

Core Java for the Impatient, Ch. 1.7
Control Flow Statements in Java Tutorial

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Control Flow 3 March 2017 16 / 16

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html

