
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Syntax Oddities

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

March 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 1 / 10

http://cs.anu.edu.au/courses/comp6700/lectures.html#J9

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Post- and pre-fix operators
2 Ternary operator
3 Varargs type declaration and varargs methods
4 Formatting string syntax

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 2 / 10

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Cute oddities

Sometimes programming languages have syntax features which may look strange, or even ugly.
This may be true, but also may be just a first impression, when later they start grow on you, and
eventually you find them appealing.

Compare this with modern art ©.

Java has elements of syntax which may be considered odd, but they are just a few, and not
extreme like in other languages (eg, Perl, which it seems is built from such oddities from top to
toe).

It is good when a language has oddities (personal opinion). They help to keep some degree of
emotional engagement with it. Java could have more of them.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 3 / 10

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pre- and post-fix value updates
For primitive numerical types, the operators

+, -, *, / and %

can be combined with the assignment operator = when used to increment (decrement, multiply,
divide,remainder) an old value :

value = value + delta; // is same as
value += delta; // same for other -, *, /, %

In a particular case of incrementing (decrementing) by 1, commonly used in determinate
for-loops, a more cryptic expression is used :

i++; // is identical to "i = i + 1" except that i is evaluated only once!
i--; // similarly for "i = i - 1"

The expression i++ is post-incrementing (first evaluates then increments), the expression ++i is
pre-incrementing (first increments then evaluates).

Quirks like ++i++ are syntax errors.

Repeat the exercise: what is the value the expression (i++ + i++ + --i) evaluates to if the
value of i before was assigned to 3?

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 4 / 10

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

String concatenation and operator overloading

The + operator also works for strings — it’s called concatenation:

String s1 = "French Connection "; String s2 = "UK"; s1 += s2; // s1 evaluates to …

It is convenient (“easy”) to use it when you build a string out of multiple strings (often using a
loop). Avoid this! since every time you make a concatenation, a new string is created (expensive
operation), which lives for brief time only (wasteful). A better option is to use the class
StringBuilder.

No other arithmetic operators are applicable to string references, or in expressions which involve,
for example, a string and an int. The multiplication of a string and an integers:

String longer = "myPride" * 3; // No can do in Java!

[Aside note: string-by-integer multiplication is legal in Python, it is even commutable which make
perfect sense!]

Except for string concatenations, the use of standard (arithmetic, logical, bitwise) operators is
illegal for any reference types (the wrapper types are OK thanks to automatic auto-boxing, J5).
The language does not allow you to define such operations when you define a new type. This
feature is called operator overloading (it is available in C++). Java does not allow operator
overloading. This decision was made in the very beginning to keep the language simple(r).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 5 / 10

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The ternary operator ? :

When a “binary” if-else statement is used to assign a value to the variable:

if (wonAOFinal)
prize = 1000000;

else
prize = 500000;

it can be rewritten in a more succinct yet expressive form :

prize = (wonAOFinal ? 1000000 : 500000);

In a general expression with the ternary ?: operator:

prize = booleanExpr ? value1 : value2;

if value1 and value2 have different types, the resulting type depends on assignable (prize).
Automatic in/out-boxing is performed when necessary. In the case of incompatible types for
value1 and value2, the first common parent is returned, up to the Object type. Error occurs if
any type is void.

A “reduced” version, called Elvis Operator, helps avoid testing for nullity in assignments:

Value v = val1 ?: val2; // if val1 is null, val2 will be used to assign v

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 6 / 10

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Varags
To write a method with an arbitrary number of parameters requires usage of an array. The new
Java 1.5 feature variable arguments (varargs), which allows an alternative way of dealing with
such situation. The last parameter in a method (or constructor) can be declared as a sequence —
finite but otherwise undetermined set of parameters — of a given type. The syntax :

public static R foo(T1 t1, T2 t2, T... t);

(only one varargs is allowed which must be the last declared parameter) which is treated by the
compiler as

public static R foo(T1 t1, T2 t2, T[] t);

the access and scope modifiers are arbitrary; T1, T2, T and R are parameters and return type.
When the method foo() is called, the third parameter can be replaced by any number of actual
parameters of the same type T, including no parameters, ie, passing no arguments is a legal
(while the “old-fashioned” array form assumes that the last argument is always included, and it’s
an array). main can also be declared with varargs.

foo(a1, a2);
foo(a1, a2, v1);
foo(a1, a2, v1, v2,...,vn);
public static void main(String... args) {...};

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 7 / 10

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

printf(): “March of Progress” (after Cay Hortsmann)

printf(String format, Object... args) // the syntax of printf() formatting function:
System.out.printf("%s: %d, %s%n", name, idnum, address); // the usage

1980: C

printf("%10.2f", x);

1988: C++

cout << setw(10) << setprecision(2) << showpoint << x;

1996: Java

java.text.NumberFormat formatter = java.text.NumberFormat.getNumberInstance();
formatter.setMinimumFractionDigits(2);
formatter.setMaximumFractionDigits(2);
String s = formatter.format(x);
for (int i = s.length(); i < 10; i++)

System.out.print(' ');
System.out.print(s);

2004: Java

System.out.printf("%10.2f", x);

2008 and beyond: Java.next

printf("%10.2f", x) // Scala and Groovy
println(f"$x%10.2f") // Scala 2.10

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 8 / 10

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

String Formatting

Instead of multiple concatenations used to create a long string with various values of different
type inserted, prefer string formatting. The static method

String.format(java.lang.String, java.lang.Object...)

returns a string given by the first argument, a so called formatting string, in which embedded
format specifiers (those thingies with %) are replaced by appropriately processed values given by
the 2nd, 3d,… arguments. Not only primitive values formatting can be achieved in very flexible
way:

String s1 = String.format("Decimal: %d and hex: %x", 2716);
String s2 = String.format("� is equal %.10f", Math.PI);

A complex object like date (an instance of Calendar or Date), can be formatted to meet the
locale specifications:

Calendar c = ...;
String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 9 / 10

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 1.4.3, 1.6, 1.9.3
Format string syntax

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Syntax Oddities March 2017 10 / 10

http://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#syntax

