
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Classes

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

March 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 1 / 18

http://cs.anu.edu.au/courses/comp6700/lectures.html#O2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Class members
2 Access and scope
3 Constructors
4 Creation of objects

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 2 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What’s inside a class?
In Java, objects are created in accordance with a template which determines their members and
the very process of creation. This template is defined via class declaration. The class definition
includes:

1 Class declaration — access, scope, name, superclass name, implemented interfaces —
followed by the class body which consists of:

2 zero, one or many field declarations (an instance of a class without fields is a stateless
object, eg. java.lang.Object)

3 zero, one or many method declarations (an instance of a class without methods is possible,
but very interesting; when they are required, better to use enam types — we’ll learn this later)

4 zero, one or many so-called constructors, which are like methods but strictly speaking are
not — instead of returning a value, they build and return a reference to an object of this
class; constructors have the same name as their class

If you have a reference variable o (or a literal object, eg a string), the operator . (dot) applied to
o (or a literal object) gives an access to the object internal resources (object’s members), if such
access is allowed: o.f evaluates the field f, o.m() invokes the method m().

Constructors are needed to control the creation of an object; when we need to declare and create
an object (also called an instance of the class), we have to use the operator new “applied” to the
class constructor:

MyType myObject = new MyType();

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 3 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Syntax of class declaration
Class name defines type of its instances; class members (methods + fields) define their properties
(what can be done with them). In other words — Object-oriented language provides the
programmer with possibility to define their own type.

The type definition is achieved by class declaration

Formal (“dry”) syntax rules:

[<modifier>]* class ClassName [extends ParentClass] [implements AnInterface]* {
[<access-modifier>] [<scope-modifier>] returnType fieldName [= initValue];
... repeated as many times as there are fields ...

[<access-modifier>] [<scope-modifier>] returType methodName([arguments]) {
body of a method;

}

[<access-modifier>] [<scope-modifier>] ClassName(...) {
... body of a constructor ...

}
... more methods, constructors and inner classes ...

}

can be made more vivid in an example: let’s declare the class Planet and create a few planet
objects (and make them move ©).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 4 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class Planet
The class Planet describes a celestial body:

class Planet {
public long idNum; public String name; // two declaration on one line
public Planet orbits; // not all fields are nouns
public long id; // the catalog number of the new planet
private static long nextID = 0; //the total planet counter

public Planet(String s) { //one constructor
this.name = s;
id = nextID++; // here the post-increment matter!

}
public static long getNumberOfPlanets() { return nextID; }

public Planet(String s, Planet p) { //another constructor
this.name = s;
this.orbits = p;
id = nextID++;

}
}
Planet moon; // variable declaration
Planet sun = new Planet("Sun"); // declaration and instantiation
Planet venus = new Planet("Venus", sun); // another instantiation

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 5 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constructors and methods

A class can provide several ways to create its objects. If a class declaration include more than one
constructor, and they all must have the same name, the only way to discriminate them is via the
type and number of parameters each is declared with (and by exceptions they throw).

When no constructors are defined, the default parameterless constructor is available (it’s inherited
from parent class). If at least one constructor is defined, the default constructor is no longer
available by default and must be defined explicitly (if needed).

class Student {
String name;
Degree degree;
ArrayList<Course> courses = new ArrayList<Course>();

public Student(String n) {…}
public Student(String n, Degree d) {…}

public void enrollCourse(Course c) { courses.add(c); }
public void study() {…}
public Mark sitExam(Course c) {…}
... ...

}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 6 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Objects born and lived

Once classes are defined, one can declare, create and manage objects of those classes:

Course comp6700 = new Course("comp6700"); // creating a new course
Degree bit = new Degree("MITS"); // new degree
Student stud = new Student("John Doe", bit); // start a degree
stud.enrollCourse(comp6700); // enrolling in a course
stud.study(); // "studying hard"
comp6700.setMark(stud,stud.sitExam(comp6700)); // earning a mark
...
stud.receiveGrades(comp6700);
...
stud.completeDegree();

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 7 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Student in memory”

It is useful to visualise an object memory layout:

object diagram

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 8 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Objects in memory: Fields and Methods

With every constructor call, a memory block structured in accordance with the class definition is
allocated, as illustrated by the object diagram. The fields of a newly created object are initialised
first to their defaults, and then (after the parent constructor executes) to the values in
assignment statements outside the constructors, and then the fields are assigned values as defined
by the constructor.

The memory layout for (non-static) fields and methods is different: the object methods aren’t
grouped with the fields in memory (that would be wasteful). Memory is allocated for the instance
fields of each new object, but there’s no need to allocate memory for methods. All an instance
needs is access to its methods, and all instances of the same class share access to the same set of
methods. There’s only one copy of the methods in memory, no matter how many instances of the
class are created. However, whether access to the methods requires a reference to an object, or
the methods can be called by the class name — this depends on the scope identifier in the
methods declaration:

Static methods can be called without even a single instance of the class in existence
Static fields can be read (and reset, if their are not final) without a single object of the class
being created. There is a unique copy of a static field — one per class; for multiple
instances, the value of their static field is the same
Examples: String.format()), Math.PI, System.out
If a method makes use of a static member, it itself must be declared static (“why?”)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 9 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Member access

Fields and methods can be accessed by referencing the object name, or class name for static
members:

System.out.println("The name of this planet is " + sun.name);
System.out.println("The total number of planets is " + Planet.nextID);

The access modifiers regulate how and which class member is visible — can be read,
(re-)assigned or called (for methods):

1 public — visible from anywhere outside
2 "friend" (implicit, assumed if no access modifier is used; no such keyword) — visible

within the same package
3 protected — visible only to objects which are instances of subclasses of the class
4 private — totally invisible from outside, can be only used inside the class; Different objects

of the same class can access the other’s private members, see Shtuka.java

The general policy is to declare fields private and (non-auxiliary) methods public, but it really
depends on design considerations. The value of a private field is read by calling the “getter”
method, and its value is changed with a “setter” method (not every class provides setter
methods, immutable classes data, like in String, are not meant to be altered).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 10 / 18

http://cs.anu.edu.au/courses/comp6700/examples/oo/Shtuka.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Member scope
Class members can have either an object scope, or a class scope, when they are declared static.
Non-static members are associated with individual instances of the class (objects), and two values
of the same field but from two different objects will have uncorrelated values:

public class Parameter {
private int x; // declared static in StaticParameter class
public Parameter(int x) { this.x = x; }

public int getX() { return x; } // allows outside reading private field
public void setX(int y) { this.x = y; } // allows changing it

public String toString() { return "" + x; }
}
Parameter p1 = new Parameter(1);
Parameter p2 = new Parameter(1);
System.out.println("p1 has " + p1.getX() +

" and p2 has " + p2.getX()); // prints "... 1 ... and ... 1 ..."
p1.setX(10);
System.out.println("p1 has " + p1.getX() +

" and p2 has " + p2.getX()); // prints "... 10 ... and ... 1 ..."

The modified Parameter class (in which static modifiers are used) (the code StaticParameter)
will produce different output (study!).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 11 / 18

http://cs.anu.edu.au/courses/comp6700/examples/misc/StaticParameter.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Member variability

The class members can be also controlled by presence of the modifier final.

final field makes the value unchangeable, constant; its initialisation can be delayed (so
called blank finals), but once initialised, further attempt to change its — even to the same
value! — value will result in a compile time error:
final int i = 0;
i = 1; // Error: This object cannot be modified

final method cannot be overridden in a subclass (when inheritance is used, see)3)

Normally, all modifiers which can be used in a method declaration, can be also used in a class
declaration, with the similar meaning. So far unmentioned modifiers include:

abstract (for classes and methods) — will learn in O3 and O4
native (for methods) — indicates non-Java implementation
strctfp (for methods) — used to indicate strict floating point arithmetic (not discussed)
annotation (for classes and methods) — will be mentioned in a later week (time permitting)

Some modifiers cannot be used together, eg final and abstract together “do not compute”.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 12 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Method overloading
Taste of OO power

The method println(), which we have used many times already, seems was one and the same
despite the arguments were different (values of all types which we wanted to be printed). The
sameness of the println() was an illusion — those were, in fact, different methods! Different by
the type (and number) of parameter which one can pass to them. But they all can have the same
name! A method whose name used in other methods which differ by the type and the number of
their parameters is said to have been overloaded:

public class DataArtist {
...
public void draw(String s) { ... }
public void draw(int i) { ... }
public void draw(double f) { ... }
...

}

It is illegal to overload a method name with the same number and type of arguments, because
the compiler cannot tell them apart. Also, the compiler does not consider return type when
differentiating methods, and thus one cannot declare two methods with the same parameters but
with different return types. General advice — not overuse the overloading, since it precludes
readability. Especially, do not overload methods with the same number (but different type) of
parameters, including varargs (J9).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 13 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constructors, defaults, this self-reference
The constructor definitions can contain any code, but their primary purpose is to initialise the
class fields. Fields which are not initialised by the constructor explicitly, are given default values:

primitive number types default to 0 (floating types to +0.0)
a boolean type defaults to false
a character type defaults to '\u0000'
a reference type defaults to null

static fields can sometimes be assigned in the constructor:

public Planet(String s, Planet p) {
this.name = s; // the self-reference this is optional
this.orbits = p; // it's a good practice to avoid errors
idNum = nextID++; // counting number of created objects

}

this is used for object self-referencing (eg, it can be passed as a parameter).

public ArrayList<Planet> satellites; // ArrayList is like an array
public Planet(String s, Planet p) {

this.name = s; this.orbits = p; // apologies for two statements here
p.sattellites.add(this);

}
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 14 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Object creation

Three stages — when class is loaded, then when its constructor is called but before it’s executed,
and finally after the constructor executed:

class compiled and loaded (verification
etc)

before constructor
executes after constructor executes

Notice the appearance of an additional String object at the second stage due to presence of new
operator inside the Dummy constructor which results in a creation of new String object. If the
assignment of str value was different: str = "abcdefg"; — then no new String object was
created, but the reference str was given a value of the reference to the constant string “abcdefg”
(remember String’s pool).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 15 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Static initialisers

Constructors perform object initialisation. A class also allow to initialise its (static) fields, but
there is no special constructor-like declaration — simple include the initialisation statements in a
block (or blocks) preceded by the static keyword static { ... }. The location and the
number of static blocks inside a class is arbitrary. They are executed only once.

public class ArticlesAndPronouns {
private static int counter = 0;
private static Set<String> ARTICLES = new HashSet<>();
static {

ARTICLES.add("a");
ARTICLES.add("an");
ARTICLES.add("the");
System.out.println(ARTICLES);

}
}

Similar to a class method, a static initialiser cannot use the this keyword or any instance fields or
instance methods of the class. Static blocks are useful when static fields (esp. complex container
types) require non-trivial initialisation code, and it’s useful to have it close to the field declaration.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 16 / 18

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Instance initialisers

Classes also can have instance initialisers — same blocks but without the static keyword:

private Set<String> thirdPersonPronouns;
{

thirdPersonPronouns = new HashSet<>();
thirdPersonPronouns.add("instance " + counter);
thirdPersonPronouns.add("he"); thirdPersonPronouns.add("she");
thirdPersonPronouns.add("it"); thirdPersonPronouns.add("they");

}

The use of instance initialisers is rare. Also, the above block can be placed in a doubly-delineated
block which immediately follows the reference assignment (code below is identical to that above):

private Set<String> thirdPersonPronouns = new HashSet<String>() {{
add("instance " + counter);
add("he"); add("she"); add("it"); add("they");

}};

This is more compact but rather quaint; also (?) — the type inference which allows to drop the
type parameter value in the constructor (feature allowed since Java 7), doesn’t work in the
“doubly-bracey” version (§). See the complete code in ArticlesAndPronouns.java

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 17 / 18

http://cs.anu.edu.au/courses/comp6700/examples/oo/ArticlesAndPronouns.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 2.1, 2.2, 2.4
Java Tutorial’s Classes and Objects

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Classes March 2017 18 / 18

http://docs.oracle.com/javase/tutorial/java/javaOO/index.html

