
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Inheritance

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

March 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 1 / 19

http://cs.anu.edu.au/courses/comp6700/lectures.html#O3


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Class declaration code reuse
2 Constructor revisited, super
3 Abstract classes
4 Polymorphism

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 2 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inheritance: code re-use
The ability to re-use existing code (in the form of class definitions), or inherit previous definitions
in Java is realised via the mechanism of inheritance. A new subclass (child, derived) can be
defined to inherit the definition of an existing class (superclass, parent) and also to add new class
members and change the inherited ones.

class A {
protected int oldField;
public void oldMethod();

}
class B extends A {

... A's public/protected members are included

... their access modifiers can be only changed to

... raise their visibility, eg protected -> public
public B(..) { // this is B's constructor

super(..); // call to parent constructor
newField = some_value; }

private int newField;
public void newMethod();

}

Everything (fields, methods, constructors) from the parent class can be accessed in the child class
using the parent reference super (an example of constructor’s re-use is Manager.java. Call to
super() is always a good practice in every child constructor.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 3 / 19

http://cs.anu.edu.au/courses/comp6700/examples/oo/Manager.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A PIE of OO

The Object-Orientation paradigm is like a pie (using Peter van der Linden’s simile):

The most important aspects of the OO paradigm:

Abstraction — deal with multitude of object types as if they were one

Polymorphism —use objects of various type as if they were same
Inheritance — reuse and change a type and still retaining one
Encupsulation — hide behind an interface allowing changes in object’s internals

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 4 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A PIE of OO

The Object-Orientation paradigm is like a pie (using Peter van der Linden’s simile):

The most important aspects of the OO paradigm:

Abstraction — deal with multitude of object types as if they were one
Polymorphism —use objects of various type as if they were same

Inheritance — reuse and change a type and still retaining one
Encupsulation — hide behind an interface allowing changes in object’s internals

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 4 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A PIE of OO

The Object-Orientation paradigm is like a pie (using Peter van der Linden’s simile):

The most important aspects of the OO paradigm:

Abstraction — deal with multitude of object types as if they were one
Polymorphism —use objects of various type as if they were same
Inheritance — reuse and change a type and still retaining one

Encupsulation — hide behind an interface allowing changes in object’s internals

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 4 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A PIE of OO

The Object-Orientation paradigm is like a pie (using Peter van der Linden’s simile):

The most important aspects of the OO paradigm:

Abstraction — deal with multitude of object types as if they were one
Polymorphism —use objects of various type as if they were same
Inheritance — reuse and change a type and still retaining one
Encupsulation — hide behind an interface allowing changes in object’s internals

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 4 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inheritance: Constructor’s work
What happens when the constructor is called?

When an object is created, memory is allocated for all its fields, including those which are
inherited from superclasses (parent and all the ancestors all the way up to the Object class —
Abraham of Java’s class hierarchy). The class fields are set to their respective default values
before the constructor’s phases begin:

1 The superclass constructor — either default super() or one with parameters super(...) —
is invoked;

phases 1,2,3 of the previous level are executed based on the code of the superclass;
2 The class fields are initialised using their initialisers and initialisation blocks (the blocks of

code outside the constrictors or class methods which initialise the fields of the object; see the
example Body.java) in the same order in which they are declared in the class

3 The rest of the constructor body — everything after super() — is executed (that’s why
super() should be the first statement inside the constructor body, or be absent altogether);

Explicit constructor invocation: One class constructor can invoke another constructor of the
same class by calling this(...). super(), or this() must be the first constructor statement.
this() helps to write a reusable constructor code only once, and then invoke it by calling
this(arg1,arg2,…) in other constructors when same initialisation is required.

Important: if a class can be extended, do not call any non-final non-private methods inside its
constructor!

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 5 / 19

http://cs.anu.edu.au/courses/comp6700/examples/oo/Body.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constructor Phases

This table shows the values which the Y subclass (of the class X) fields have at different stages
of the Y() constructor executions. The source code for the parent class X.java and its child
Y.java is good for understanding what is gong on:

Step What Happens xMask yMask fullMask

0 Fields set to defaults 0 0 0
1 Y constructor invoked 0 0 0
2 X constructor invoked 0 0 0
3 Object constr. invoked 0 0 0
4 X field initialised 0x00ff 0 0
5 X constructor executed 0x00ff 0 0x00ff
6 Y field initialised 0x00ff 0xff00 0x00ff
7 Y constructor executed 0x00ff 0xff00 0xffff

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 6 / 19

http://cs.anu.edu.au/courses/comp6700/examples/oo/X.java
http://cs.anu.edu.au/courses/comp6700/examples/oo/Y.java


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inheritance Hierarchy

In an inheritance hierarchy, every class from a sub-tree represents a subtype of the type
represented by the root of sub-tree. Type and its subtype are in “IsA” relationship.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 7 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Types and Classes from Inheritance Hierarchy
Type is determined by declaration, while the class is set by instantiation. The two need not be
the same, but they cannot be arbitrary:

class Person { void justLive(); }
class Student extends Person {

void study();
}
class Undergraduate extends Student {

void study() { /* just study */ };
}
class ResearchStudent extends Student {

void study() { /* do research */ }
}
class Employee extends Person {

void work();
}

Person p = new Student("Jack Sparrow"); // upcasting, OK: Student IsA Person
Student st = new Person("Bill Turner"); // illegal, class cast exception
Student st = p; // unsafe, p may not be Student type
p.study(); // illegal, downcasting, needs explicit cast
((Student)p).study(); // OK if p IsA Student, or class cast exception is thrown
Employee e = new Student("Barbossa"); // illegal, incompatible types

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 8 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inheritance: Overriding

Every class in Java inherits
either explicitly via extends
or implicitly from the Object class

Hence, all public and protected methods from the Object class are present in all classes
Two such methods — equals() and hashCode() play important role, they often must be
overridden (will be discussed later)
The inheritance does not only allow to re-use existing code — it also let you modify an
inherited definition to meet new requirements
This is achieved through overriding of inherited methods — providing a new implementation
without changing the signature and the contract (to achieve the polymorphism, see next
slide) of the inherited method

class Employee {
...
double pay() {

return salary;
}

}

class Manager
extends Employee {

...
double pay() {

return super.pay()
+ bonus;

}
}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 9 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inheritance class diagram

Parent’s attributes are accessed via super reference anywhere inside the child class. Multiple
parent constructors differ by their parameters, as ordinary methods. Eg, the Manager constructor
which calls super(String,String,double) refers to Employee(String,String,double).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 10 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Polymorphism and dynamic binding

The mechanism of extending an old type isn’t just good in terms of code re-use. It allows to
write shorter, yet more flexible and expressive programs. Namely, if the client of your code can
use an object of some class, it can also use objects of its subclasses. This feature is called
polymorphism, meaning that an object of a given class can, in fact, have multiple forms — of its
own class or of any class it extends. Put it another way: polymorphism is the ability for different
objects to respond to identical messages.

All fields and methods of a given class, which are visible outside (1), together with the conditions
when they are used (2) and the effects they produced (3), are collectively known as the class
contract — it represents the declared raison d’etre of the class. Class extension provides two
kinds of inheritance:

inheritance of contract or type — here the subclass is endowed with the type of the
superclass and can be used where the superclass can be used;
inheritance of implementation — here the subclass acquires the implementation of the
superclass in the form of its (non-private) fields and methods.

Example of the payroll() method in the EmployeeTest.java program. Depending on the class of
the Employee object which is used in the payroll() method, different getSalary() methods are
used. This binding of the call (ie, method invocation) to a particular method is known as
dynamic binding. Another set of examples are shapes and their area.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 11 / 19

http://cs.anu.edu.au/courses/comp6700/examples/oo/EmployeeTest.java
http://cs.anu.edu.au/courses/comp6700/examples/polymorphism/


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic binding and multiple dispatch
When classes of a and b are known only at run-time:

a.foo(b) — resolving the method based on the argument, overloading
a.foo(b) — resolving the method based on the object, polymorphism, dynamic binding
a.foo(b) — resolving the method based on both, double dispatch
foo(a,b,c,…) — in the paradigm-neutral form, multiple dispatch

In OO languages, the multiple dispatch implementation is possible but “smells” (fragile code) —
so called Visitor Pattern (lab 5, extra). There are languages where the multiple dispatch is
natural (Lisps, Julia). There are languages where a reasonable solution is possible (Python), but
not encouraged (rather complex).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 12 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Covariant overriding

A method can also return a reference type. For instance, a method for calculating a Number type
value which is what the method returns:

// in class MyNumber
double real;
public MyNumber reciprocal() {

return new MyNumber(1 / real);
}

// in class MyComplexNumber
@Override
//without covariant overriding the return type should be as in parent class
public MyComplexNumber reciprocal() {

double abs = real*real + imag*imag;
return new MyComplexNumber(real / abs, - imag / abs);

}

If the class MyNumber is extended to MyComplexNumber and you want to override
resiprocal() to return, quite appropriately, the MyComplexNumber value, this is possible. This
technique, called covariant return type, means that when overriding, the return type is allowed to
vary in the same direction as the subclass (see covariant overriding example).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 13 / 19

http://cs.anu.edu.au/courses/comp6700/examples/overriding/index.html


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Abstract classes: Partial implementation
Abstract classes allow to capture an abstraction — a state or behavioural feature which is
common in a family of types, which they all have, but in somewhat different (particular) way.
The whole family is characterised by declaring that something is done, but not how it is done.
The “how”, ie, the concrete implementation, differs from one type to another. In Java, an
abstract class usually has one or more declared, but not implemented methods which are marked
with the keyword abstract (one can declare a class abstract without having a single abstract
method in it). Abstract classes cannot be instantiated. The classes which provide implementation
of abstract methods (concrete subclasses) must extend the abstract class. The opposite is also
possible: a class can extend a concrete superclass and “override” a normal (implemented) method
to make it abstract (why would it be useful?).

public abstract class Person {
... class fields as in an ordinary class

public abstract void doSmth();
... plus more abstract and/or normal methods

}

public class Student extends Person {
public void doSmth() {

study();
studyMore();
partyAtLast();

}
}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 14 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Completing (Abstract) Class Definition

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 15 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multiple Inheritance

Multiple inheritance — an ability to define a type which combines properties of more than one
existing type — is a double-edge sword: powerful and dangerous.

It would be often beneficial for a new class to inherit at once from more than one parent, eg, a
HollywoodActor object can go on trial for a (real life) crime, like tax evasion or murder. In such
case, a class AccusedActor can be created which needs to inherit from both the HollywoodActor
and Civilian (to account for attributes like SS number, or payTax() method). (Less queer
example is the SwissArmyKnife class.)

The diamond of death problem

The problem with multiple inheritance occur when two (or more) parents of the same class have
common ancestry. Who is super? ClassB or ClassC? If each of them had modified doSmth(), or
had hidden aField, which copy of them ClassD inherited?

Some OO languages (C++, Eiffel, Python) allow multiple inheritance, but resolving DDP adds
complexity and makes design and use of class hierarchy more complicated. Java constrains the
multiple inheritance by allowing only single inheritance of implementation and multiple
inheritance of contract.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 16 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Diamond of Death

With pros and cons of the multiple (by implementation) inheritance, the choice (allowed or not)
is less significant today, mainly due to lesser importance (and use) of the inheritance itself. “The
new generation chooses composition over inheritance.”

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 17 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

OO without classes — Prototype Programming

What is more important for OOP — classes or objects? A class is an accumulation of properties
which are common to instances. When a computation is conceived “from the top”, defining
classes is an adequate approach to capture abstraction, and class based implementation for
creating objects is appropriate. Since Java is a statically typed compiled language, once an object
is created, its structure and behaviour will not change (unless you are using the reflections or
some other “black art”, that is). This is good since it guarantees that object’s contract will not
change (which gives a layer of security to be expected in statically-typed languages), but
sometimes one can benefit from the ability to change object’s properties while it is alive.
Dynamic OO languages (like Python) allow just that, but they still begin with classes (in Python,
there are ways to restrain object’s variability via the slot-mechanism).

What if the problem in question does not yield to easy classification: multiple objects do exist,
but finding common features to define their class is not possible. (In philosophy, this problem was
emphasised by Ludwig Wittgenstein). There is an alternative paradigm which is known as
prototype based (OO) programming.

In languages like Self, Lua, Smalltalk (which allows classes, too) and (most popular) JavaScript,
objects are created by cloning from a set of predefined object literals which are called prototypes,
with the ability to add new attributes and behaviours during the object lifetime. In the
prototype-based languages, the notion of type hierarchy does not exist.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 18 / 19



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 4.1
Oracle’s Java Tutorial Inheritance

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Inheritance March 2017 19 / 19

http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

