
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Interfaces. Types in Java

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

March 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 1 / 15

http://cs.anu.edu.au/courses/comp6700/lectures.html#O4

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Multiple Inheritance by Contract
2 Interface Declaration
3 Most Important OOP Principle: Program to Interface
4 Designing Classes for Inheritance
5 Default Methods: now almost Traits

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 2 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interfaces: Only declared behaviour
Multiple inheritance by implementation (where it is allowed) is not too much of a complexity
feature, rather a “joy killer”. And it is rarely path to a good design solution. Often, that path is
inheritance by contract.

In Java, inheritance by contract comes via types defined by contract (promise): interface
keyword is used in declaration instead of (abstract) class. An interface is an abstract class
stripped of any method implementations and state fields. No implementation, no state! Pure
contract. The only members allowed are non-private method declarations (abstract modifier is
redundant), and constants — static (no instantiation!) and non blank finals (again, public
static final modifiers are redundant in declarations):

interface Verbose {
int SILENT = 0; // interface constants have fully CAPITALISED identifiers
int TERSE = 1;
int NORMAL = 2;
int VERBOSE = 3;

void setVerbosity(int level);
int getVerbosity();

}

In the manner of extending abstract class to get complete implementation and object creation, an
interface must be implemented into the concrete class via implementation of every method
declared in the interface.

class MyConcreteClass implements Verbose { }Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 3 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interfaces: Implementation

The diamond of death phenomenon cannot occur if the implementing class inherits only one
(abstract or concrete, does not matter) class, and implements a number (32767 to be exact;
imaging a class which implements that many!) of interfaces, because there is no competing
implementations which vie to become the one in the derived class (there is at most one).

If a class implements multiple interfaces, they are declared in a comma separated list following
the implements keyword:

class ClassD extends ClassA implements InterfaceB, interfaceC {
... adding own fields and methods ...
... possibly overriding methods form ClassA ...

void methodOfB(){
... ...
}

int methodOfC(){
... ...
}

}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 4 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Object with Multiple Types

An object may have multiple types — nothing wrong with this
The same object means different things to different people clients
More types can be added later without affecting other clients (would need a new class which
implements a new interface); sometimes the original object is recreated using the Decorator
Pattern which creates an illusion that the old object assumes new features.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 5 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interfaces as types, polymorphism again
Interfaces allow breaking of a program into parts: classes which implement a particular interface
are decoupled from classes which use the behaviour declared in that interface.

Use interface type as a formal parameter for a method — any method promised by the
interface parameter can be invoked:
doSmth(type param) { // at compile time type is an interface;

param.foo(); // at run time param is an object
param.bar(); // of implementing class

}
When the method is called, an object of a real class, which implemented the type interface,
is passed as the actual parameter.
Same principle applies to method return types — they are declared as an interface type, but
when executed, an object of a concrete class which implements that interface is returned.
Interface alone suffices to compile the code which uses it. At run-time, objects of a real class
are required.
Interfaces define the method signatures, and implementing classes must preserve them.
An interface name can be used anywhere a type can be used; interface provides the most
flexible form of type definition.

Interfaces are extendable (NewInterface extends OldInterface) for adding new method
declarations without breaking existing classes which implement the OldInterface type. Unlike
class extension, a multiple inheritance of interfaces is allowed (no case for competing
implementations, and parent interface’s constants get hidden).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 6 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Examples of Interfaces

Objects often needs to be compared (smaller, equals, greater?) — always possible if their
class has implemented the java.lang.Comparable interface:
public interface Comparable<T> {

public int compareTo(T);
}
Here T is the type parameter which represents the objects’ class: String implements
Comparable<String>. Sounds weird? Not really.
java.util.Comparator interface is similar to Comparable but its method takes two
parameter (objects to be compared):
public interface Comparator<T> {

public int compare(T t1, T t2);
}
Will be used when we need to implement comparison of objects with a new aspect, but the
objects’ class is already Comparable (and in a wrong way).
java.lang.Runnable for defining a task which will be executed in a new thread:
public interface Runnable {

public void run();
}
A Runnable object is given to a new thread as a parameter; the program will decide itself
when to start the thread (only then, the defined inside run() process will be started).

Objects of these interfaces are now often replaced by λ-expressions.
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 7 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Default Methods
Java 8 has extended existing interfaces (like java.util.Collection) to provide new methods
needed in programming with streams (java.util.Collection.stream() method). By the old
rule, this should have broken the backward compatibility, because every class which implemented
such extended interface now had to provide an implementation for the new methods (even if the
old code did not use it). Is the “sacred cow” of Java is slain? NO!

The defender methods (those newly added) are now implemented in interfaces! They are
concrete methods marked by the qualifier default (it’s not seen in the class interface, demo).

interface Person {
long getId(); // usual abstract method
default String getName() { // public defender (aka virtual extension) method

return "John Doe, NSA analyst";
}

}
class USAPatriot implements Person {

public long getId() { return 42; }
}

This compiles OK, and the call new USAPatrion().getName() returns … what you might have
guessed. Classes still can implement multiple interfaces. If two (or more) have default methods
with the same name, the name resolution rules apply (not so simple Java now, eh?). More on this
later, in F2.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 8 / 15

http://cs.anu.edu.au/courses/comp6700/lectures.html#F2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Abstract Classes vs Interfaces

Which one to choose

Repeat the difference:

Interfaces provide a form of multiple inheritance without complex semantics. For abstract
classes, the multiple inheritance is forbidden, even if all methods are abstract.
An abstract class can contain partial implementation, protected fields and methods, static
methods and other standard elements, while interfaces can only have public static constants
and public methods without implementation.

Therefore:

If multiple inheritance is envisaged, interfaces are used.
But abstract classes give easier re-use through available (partial) implementation.
Abstract classes allow to constrain modification (via use of final modifier) of some aspects
of behaviour.
If a major class is meant to be extended, make it to implement an interface, and make
clients of this class to refer to the interface instead.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 9 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Deeper view of Object

The idea that object encapsulates its implementation and reveals its interface represents only the
technical aspect. A deeper and more powerful idea is that Object is its Interface.

If an object is an idea of computation, then it is more stable and has more longevity if it has less
accidental (implementation specific) characteristics. In its ideal, purified form an object is defined
by operations which one can perform with it, and by nothing else.

The watch measures time, it does not count it!

(Courtesy of Apple Inc.)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 10 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Three kinds of type in Java

Three reference types — classes, abstract classes, and interfaces — seems excessive, isn’t?

1 Concrete classes — No questions! Templates for real objects
2 Abstract classes — Understandable! Help to reuse code
3 Interfaces — ???

The most important OO idea: “Program to interface!”

When writing a program, try — as much as possible — to program to interface. The client code
of an object (a class which has it as a field, or a method which uses it as an actual parameter, or
a code block which is given access to an object) should be only revealed that part of its interface
which they actually use, not more! If the object reference has many types (ie, it is instantiated to
a class which implements multiple interfaces), and the client needs only one of them, it is only
with that type the object should be declared to its clients.

Ideas, concepts and knowledge in general (including software) — they are most useful, stable and
valuable if they are expressed in abstract terms.(How many ideas and how many working artefacts
from Antiquity are around today?) In software, this abstraction of object properties is its interface.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 11 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interface View of the World

Physics analogy: motion of a bunch of electrically charged particles (electrons) in an external
electro-magnetic field. What do we need to know to fully describe the motion? Electron’s
internal structure needs not to be known to calculate the trajectories; only their “interface”:
charge, mass, position and velocity. Future advances in Physics may reveal electron internal
structure, but the laws of motion will remain intact.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 12 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamics in terms of “Interfaces”

Signals and methods in OO programs

1 (time t1, t2…): Objects o1… o6 are created at various stages of execution
2 (t2): An object o1 sends a signal to o4 with data containing a reference to an object o2
3 (t3 >= t2): The object o4 receives this signal and executes a method (or, several methods);

the received signal contains a reference to o2 (a parameter to one of o4 methods), and o4
may invoke methods of o2 as a part of its response; the state of o4 may change, and it may
emit a signal to another object o3 passing some data; the data which are passed are
obtained as return values of methods which the object o4 executed between receiving the
signal from o1 and sending the signal to o3

4 (t5): All references to the object o2 are lost, this object “dies” (is garbage-collected)
5 States of all objects undergo evolution during the program execution (red lines), which

depends both on the global program logic (“external force”), and on signals they receive
from other objects (including their own).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 13 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Design for inheritance

When a class is extended and an implementation of its method is changed, it’s said then the
method is overridden (not confuse with method overloading). When we are dealing with
instances of a class, it is the actual class of the object which determines which implementation is
used. Apart from changing implementation, the overriding can widen the access modifier, ie,
make protected method public, but it cannot make it private. If the parental implementation
needs to be used, it can be accessed via the reference to the superclass: super.do().

When designing a class for extension, one must consider which access modifier to give to fields
(private or protected, the last choice can be good for performance but must be exercises
carefully) and to methods (protected or public). Like many design issues, this is a complex one
and requires experience and care. Pragmatic advice: if you do not trust the class’s possible
children to preserve the integrity of the class contract, then limit the access of its members. If the
class method should not be overridden no matter what, it must be declared final (this will
disallow any possible future overriding of the method by its descendants). If the whole class is not
meant to be extended, it itself must be declared final (all methods in such a class are implicitly
final).

final class NonExtendableClass { }

Attempts to declare a class which extends NonExtendableClass will be met with obstinate
compiler error.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 14 / 15

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 3.1, 3.2, 3.3
Oracle’s Tutorial Interfaces
For a critical view about the design decision to have both — abstract class and
interface — type declarations, as well as two different statements to define a type — with
extends and implements keywords, read a short blog by Robert C. Martin (aka Uncle Bob)
“Interface Considered Harmful” (I recommend reading this blog regularly)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Interfaces. Types in Java March 2017 15 / 15

http://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
http://blog.cleancoder.com/uncle-bob/2015/01/08/InterfaceConsideredHarmful.html

