COMP6700/2140 Object Equality and all that

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

March 2017

«AO> «F>r «=)r «E)» Q>

http://cs.anu.edu.au/courses/comp6700/lectures.html#O5

Topics

@ Overriding and hiding
@ Equality of objects and equals() method:

When equality makes sense?

How to define equals?

Difficulty to follow inheritance path to equality
Composition as the solution

Once overrode equals() then do the same to hashCode ()
When equality makes sense?

© © 06 © © ©

@ Object doppelganger: to clone() or not to clone()
@ Wrapper classes and Auto In-boxing/Un-boxing
® OO Glossary

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 2/17

Overriding and hiding

If inherited instance methods can be overridden, inherited fields (if a child class introduces a field
with the name but not necessarily type identical to a field in the parent class) are hidden. For a
field in the subclass with the same name as a field in the superclass, the latter still exists, but it's
no longer accessible by its simple name. The reference must be cast to the superclass type to
access it.

class SuperShow {

public String str = "SuperString";

public void show() { System.out.println("Super.show: " + str);}
}
class ExtendShow extends SuperShow {

public String str = "ExtendString"; // hiding the field

public void show() { // overriding the method

System.out.println("Extend.show: " + str);

}

Run InheritanceTest class (which involves the parent-child pair SuperShow and ExtendShow):

Extend.show: ExtendString // method is selected by the object class
Extend.show: ExtendString

sup.str = SuperString // field is selected by the reference type
ext.str = ExtendString

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 3/17

http://cs.anu.edu.au/courses/comp6700/examples/inheritance/InheritanceTest.java
http://cs.anu.edu.au/courses/comp6700/examples/inheritance/SuperShow.java
http://cs.anu.edu.au/courses/comp6700/examples/inheritance/ExtendShow.java

Class method hiding

Static methods behave similarly to fields: they are hidden, not overridden.

Some overriding does not make sense: overriding a class method into instance method (stripping
static) doesn’t make sense, and vice-versa — overriding an instance method into a static one.
Both attempts result in the compile errors. (To make sense of these rules, remember Is-A
relationship between parent and child.) Study the example in A.java, B.java and C java.

Defining a Method with the Same Signature as a Superclass’s Method

Kind of Inheritance Superclass Instance Method Superclass Static Method
Subclass Instance Method Overrides lllegal (Compile Error)
Subclass Static Method Illegal (Compile Error) Hides

Note: In a subclass, you can overload methods inherited from the superclass. Such methods
neither hide nor override the superclass methods — they are new methods, unique to the subclass.

Note: When overriding a method, you might want to use the @0verride annotation that instructs

the compiler that you intend to override a method from the superclass. When the compiler
detects that the method does not exist in one of the superclasses, it will generate an error.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 4 /17

http://cs.anu.edu.au/courses/comp6700/examples/inheritance/overrideStatic/A.java
http://cs.anu.edu.au/courses/comp6700/examples/inheritance/overrideStatic/B.java
http://cs.anu.edu.au/courses/comp6700/examples/inheritance/overrideStatic/C.java

Reference type, actual class and super

The super can be invoked in any non-static methods. It acts as a reference to the current object
as an instance of its superclass. When you need to select a parental implementation even if the
reference is attached to an instance of the child class, use super.

class That {
protected String getName() { return "That"; } //return the class name
}
class More extends That {
protected String getName() { return "More"; } //overrides the superclass method
void printName() {
That sref = (That) this; // no need to do the cast, though
System.out.println("1 this.getName() =

= " + this.getName());

System.out.println("2 sref.getName() = " + sref.getName());

System.out.println("3 super.getName() = " + super.getName());
}

public static void main(String[] args) { (new More()).printName(); }
}

Both sref and super refer to the same object of the type That, but super will ignore the real
class of the object and use the superclass implementation.

1 this.getName() = More
2 sref.getName() = More
3 super.getName() = That

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) March 2017 5 /17

COMP6700/2140 Object Equality and all that

BN
Equality of objects

@ When equality makes sense?

«Or «Fr <« «=)» acr

BN
Equality of objects

@ When equality makes sense?
@ How to define equals?

«O>» <Fr «=» «=)H» Q>

BN
Equality of objects

@ When equality makes sense?
@ How to define equals?

@ Difficulty to follow inheritance path to equality

«O>» <Fr «=Z» «E» Q>

BN
Equality of objects

@ When equality makes sense?
@ How to define equals?

@ Difficulty to follow inheritance path to equality
@ Composition as the solution

«O>» <Fr «=Z» «E» Q>

Equality of objects

@ When equality makes sense?

@ How to define equals?

@ Difficulty to follow inheritance path to equality

@ Composition as the solution

® Once overrode equals() then do the same to hashCode ()

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 6 /17

Equality of references and objects

When two objects of the same class can considered equal but independent? This depends on how

we define the object equality.

String

string

str: | |- |[,],)

Dummy di, d2;

d1l = new Dummy(0,"D1");
d2 = new Dummy(10,"D2");
(d1 '= 42) &&
(!d1l.equals(d2))

g
e o] [
s

e[

d2 = di;
(d1 == d2) &&
(d1.equals(d2))

Dummy
a1: E - i E string
sers [o f - [ola
String
Dummy -
S I
wiyers 25 [@]
ey

d2 = new Dummy(0,"D1");
(d1 '= d2)

but is
dl.equals(d2) ?

Alexei B Khorev and Josh Milthorpe (RSCS, ANU)

COMP6700/2140 Object Equality and all that

March 2017

7/17

equals()

Objects of the same type are often compared on equality with one another. The method
Object.equals(Object o) returns true only if the objects are one and the same (the default
implementation is the test o == this). Some classes do require this kind of behaviour (like
Thread, which represents a process, not a value). But often equals() is required as the test of
logical equality, when two instances of a value class are considered equal not only when they not
refer to the same object, but also when the objects can be substituted for one another without
altering the computational environment. Such equals() methods are important for search and
placement of elements in instances of Collection classes. Demo with two versions of equals() in
the class A.java (the test running program is TestingEquals.java).

To work correctly, the overridden equals() must satisfy the equivalence relations:

©

be reflexive, x.equals(x) returns true

be symmetric, y.equals(x) and x.equals(y) return the same value

be transitive and consistent (returns the same value over the two objects life if they are
subjected the same manipulations)

o x.equals(null) returns false

© ©

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 8 /17

http://cs.anu.edu.au/courses/comp6700/examples/inheritance/A.java
http://cs.anu.edu.au/courses/comp6700/examples/inheritance/TestingEquals.java

Problems and solutions with equals ()

Overriding equals() can occur in two ways:

o Inheritance: Extend a class by adding new aspects (fields), eg Point — ColourPoint
o Composition: Combine all aspects (old and new) into one new class

The above equivalence relations cannot be satisfied all at once if is is done on the way of
inheritance — there is simply no way to extend a class and add an aspect (a new field) while
preserving the equals() contract” (for proof see Joshua Bloch's book “The Effective Java").
However, equals() can be defined with the above properties on the way of composition.

class ColourPoint {
Point point; Colour colour;
public boolean equals(Object o) {
if (!'(o instanceof ColourPoint)) return false;
ColourPoint cp = (ColourPoint) o;
return cp.point.equals(point) && cp.colour.equals(colour);

One case, when there is no need to override equals, is when the a class is defined in such a way
that at most one object of it can be instantiated (Singleton pattern). Another example of types
for which equals() is equivalent to == is Enum (they allow only a finite number of instances
which are defined as a part of the enum type declaration).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 9 /17

Like equals() like hashCode ()

Importance of hashCode

If a new class has its equals() method overridden, so should be another “primordial” method
java.lang.0Object.hashcode (). This method is used every time an object is inserted in a data
structure like java.util.Map (where the implementation is done using a hash-table algorithm
which calculates an integer using the object state).

The hashCode contract

If the method equals() has been overridden in a new class, the two different by reference but
equal by state objects must be placed in the same bucket (which index is returned by the
hashCode () method). If hashCode () is not overridden (or overridden incorrectly), an attempt to
store an object in a map data structure will result in placing it in one (wrong) bucket, while an
attempt to retrieve the object will likely fail because the look up will be performed in the different
(wrong) bucket.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 10 / 17

How to create a doppelganger? call clone ()

Sometimes, the client code needs to create a copy of an object which has the same state as the
prototype object. This procedure is called cloning. The method which can do such creation,
clone(), is defined in the Object class; it is a native method. The Object.clone() method
returns a reference to the Object type object which must be appropriately cast. However, the
returned object must be otherwise independent from the original one such that subsequent
changes to the newly cloned object do not affect the original object (deep clone). This task
cannot be achieved by simply calling the inherited clone() — the Object.clone() is declared
protected, and every subclass needs to explicitly override it, and either keep it protected, or
promote it to public (not always a good idea). When overriding the clone() method in a
derived class, one should:

o make the class implement a dummy interface Cloneable (otherwise
CloneNotSupportedException is thrown); Object.clone() checks whether the object on
which it was invoked implements the Cloneable interface and throws
CloneNotSupportedException if it does not; clone() always returns an object of the ambient
class

o the call for the superclass clone() must be supplemented by additional statements insuring
that all reference type fields are appropriately initialised

o declare the overridden clone() to throw no CloneNotSupportedException (this is
simplification — the decision to implement Cloneable and to (not) throw the exception
depends of the class policy)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 11 /17

Good clone()

An example, given in B.java class, is demonstrated with both — naive (incorrect) and correct
versions of clone(). Class B uses a private buffer field (a simple array of int) to provide a
stack type data structure (for details, see A6) which allows to push() a value into the stack,
pop() the latest added value, and read the latest added value with getTop(). What if we
attempt to clone an existing stack object of B which then could be used as independent stack? A
very important aspect of cloning is to make sure that buffer is correctly cloned too:

public B clone() {
try {
// recreating the old object with shared reference fields
B tmp = (B) super.clone();
// calling the corresponding field's clone
tmp.buffer = buffer.clone(); /* omit this and you're in trouble! */
return tmp; // provided buffer.clone() is already correct
} catch (CloneNotSupportedException e) {
// Cannot happen -- 'cause we supported the clone
throw new InternalError(e.toString());

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 12 /17

http://cs.anu.edu.au/courses/comp6700/examples/inheritance/B.java
http://cs.anu.edu.au/courses/comp6700/lectures.html#A6

Shallow and deep clone

The cloning problem is a delicate one and it is dealt with differently by languages:

o Eiffel provides the deep clone as a language feature

o Python has a package called copy to support both shallow and deep cloning (best decision?)

o Java follows a rather quirky approach (feature/library hybrid), when the developer has
leverage of whether and how to clone

Classh

ke Ml Gitmon
s [
e Wi oy e

Ipn \
\/\‘1'[3?“5%)
bis s deap conoota \

Clasas b= a_clone(} ClassA
ST

ClassA a —

bis 3 shallow ciana of &
Ciaseh b=a.clone()

%l

[lsl7]2s]1]a]

Implementing clone() is a messy business (in Java). Often, a much better way to program
object creation in a given state is to define a copy constructor; this provides a simpler alternative
(eg, it can deal with final fields).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 13 /17

Turning Java into a pure OO language: Wrapper classes

Inclusion of primitive types in Java is a performance “hack”, not a necessary feature (Smalltalk,
or Eiffel, which predate Java, are pure OO, without primitives): primitive type variables do not
incur initialisation overhead like objects. Also a factor is to maintain the type system familiar to
C/C++ practitioners. The trade-off is to sacrifice the expressiveness and uniformity of type system.
This artificial division between two kinds of type is not only illogical, but also caused practical
limitation (eg, collection types can be only contain references as elements). To address these
issues, Java provides a wrapper class for each primitive type: Boolean, Character and the
abstract Number (with concrete subclasses to represent the number types). These classes can be
instantiated to carry the data which the corresponding primitive type do. They also provide
additional services (conversion, parsing values, etc) and type information (like range etc).

int i = 10; Integer j = new Integer(i);

i = j.intValue();

double k = j.doubleValue();

Integer 1 = Integer.decode("OxAAA");

i = Integer.parselnt((new Scanner(System.in)).next());

Purists argued that coexistence of reference and non-reference types is a flaw in language design
(eg, by Nick Ourusoff, Comm. ACM 45 (8) 2002): “..expression evaluation for primitive types
breaks the OO paradigm, data representation is confused with object encapsulation, the machine
domain is confused with the application domain...” Yet, currently Java plans to introduce value
classes.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 14 /17

Automatic Boxing/Unboxing

It used to be awkward to convert from primitives to wrapper objects and back. If numbers is an
object of ArrayList<Integer> class, its every element is an Integer object reference, which when
extracted must be converted before assignment to an int variable can be made:

int i = 10;

numbers.add(new Integer(i));

Integer j = numbers.get(4); // getting the copy of the element at index /
int k = j.intValue(Q);

Since Java SE 5, such explicit conversion is unnecessary:

Integer val = 3; // in-bozing conversion
int i = numbers.get(4); // un-bozing conversion

The class Freq created the word-frequency map reading from the command line:

public class Freq {
public static void main(Stringl] args) {
Map m = new TreeMap();
for (String word : args)
m.put (word, m.getOrDefault(word, 0) + 1); // new in Java SE 8
System.out.println(m);
}
}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 15 /17

Object-Oriented Glossary

Basic OO terms and concepts

Interface (user perspective) — set of methods which can be called on an object
Encapsulation — concealing implementation details behind object’s interface
Polymorphism — ability to treat objects of different classes by the type of their reference
Dynamic binding — choosing method implementation at run time based the object’s class
Overloading — using same name for multiple methods

Overriding — changing method’s implementation in a subclass

Hiding — using same name for a field added in a subclass

Abstract class — class with incomplete implementation

Interface (code construct) — type which only declares behaviour and no implementation
Extension (subclassing, specialising) — reusing existing class in defining a new one
Implementation — turning an interface type into concrete class

© 0 06 6 © 6 06 ©6 © ©0 ©

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Object Equality and all that March 2017 16 / 17

BN
Where to look for this topic in the textbook?

o Hortsmann's Core Java for the Impatient, Ch. 2.2.5, 3.5, 4.1, 4.2

«O>» <Fr «=Z» «E» Q>

