
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Generic Methods

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

March 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 1 / 14

http://cs.anu.edu.au/courses/comp6700/lectures.html#O8.2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generic Methods and Type Wild Cards

1 Methods with Parametrised Types
2 Why the standard “IsA”-rule doesn’t work?
3 How to define polymorphic generic methods: PECS Principle
4 Java Generics: have they screwed this up?

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 2 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generics and Object-Orientation

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 3 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Polymorphic Methods
Writing a polymorphic method with an ordinary argument and/or return value is a trivial exercise:
“program to an interface” principle is in its most standard form:

public class GenMethods {

static double square(Number x) {
double y = x.doubleValue();
return 1.0 * y*y;

}

public static void main(String[] args) {
double y = 10.0;
int x = 10;
System.out.printf("squared %d is %.2f, and squared %.2f is %.2f%n",

x, square(x), y, square(y));
}

}

The actual parameter can be of any subclass (“IsA”-relationship):

% java GenMethods
squared 10 is 100.00, and squared 10.00 is 100.00

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 4 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generic Polymorphic Method, Take One
Over to methods which are passed (return) a parameterised type argument (return value):

static Number sum(List<Number> numbers) {
double sum = 0;
for (Number n: numbers) sum += n.doubleValue();
return sum;

}
public static void main(String[] args) {

List<Double> dnumbers = Arrays.asList(new Double[] {1.0, 1.0, 3.1, 5.2, 9.5});
System.out.println(sum(dnumbers));
List<Integer> inumbers = Arrays.asList(new Integer[] {1, 1, 3, 5, 9});
System.out.println(sum(inumbers));

}

Compilation will fail:

... error: incompatible types: List<Double> cannot be converted to List<Number>
System.out.println(sum(dnumbers));

... ^

because despite Integer and Double are subclasses of Number, neither List<Integer>, nor
List<Double> are subclasses of List<Number>. How come?

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 5 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inheritance with Type Parameter
The reason is that the inheritance relation between parameterised types cannot be deduced from
the inheritance relations between the parameter type values. In other words:

Just because Integer is a subclass of Number, it does not follow that List<Integer> is
a subclass of List<Number>.

The parameterised types are invariant — for any two distinct types T1 and T2, List<T1> is
neither subclass to List<T2>, neither it is its superclass. Anything goes inside List<Object>,
only strings go inside List<String>.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 6 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generic Polymorphic Method, Take Two: Type Wildcard
To make substitution (“program to interface”) principle work with parameterised types, one
should make them covariant like in arrays: if Sub is a subtype of Super, then Sub[] is a subtype
of Super[].

A symbolic description of G<T> like “G of T” (G can be anything like List, Iterable, etc) should be
replaced on “G of some subtype of T”, and Java has the notation for this:

G<? extends T>

Subtype here is defined in such a way that every type is its own subtype. The type declaration ?
extends T is known as bounded wildcard parameter. The symbol ? is what Java syntax (since
1.5) calls the wildcard (don’t confuse it with the same term in regular expressions). The
sum(List numbers) method can be changed now:

static Number sum(List<? extends Number> numbers) {
double sum = 0;
for (Number n: numbers)

sum += n.doubleValue();
return sum;

}

It will compile (ensuring type safety) and execute correctly for both List<Integer> and
List<Double> (the main above).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 7 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

PECS Principle
<? extends E> type declaration is used in generic methods to declare parameterised types which
supply the data on which the method will perform computations. In other words, the
“extend”-wildcard is used for objects which are read.

This is the first half of the PECS rule: Producer Extends — the producer is the object (usually a
container type like Collection or List) with data which are supplied to the method code.

When an object consumes — uses to perform computations – the data, its generic type
declaration must be made with “super”-wildcard (again, super-type also includes the type itself):

G<? super T> — “G of some super-type of T”

This is the second part: Consumer Supers (“supers” is used as a verb here — in English,
everything can be turned into a verb — which simply means “being a super-type to”). To see it in
action, let’s extend the previous example with a method uniqueNumbers() and its use (in main):

static <E> void uniqueNumbers(List<E> numbers, List<E> uniques) {
for (E n: numbers) if (!uniques.contains(n)) uniques.add(n);

}
// added to main
List<Number> uniques = new ArrayList<>();
uniqueNumbers(inumbers, uniques);
uniqueNumbers(dnumbers, uniques);

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 8 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

PECS Principle
The compilation fails because the types of actual parameters do not match those in the method
declaration:

error: method uniqueNumbers in class GenMethods cannot be applied to given types;
uniqueNumbers(inumbers, uniques);
^

error: method uniqueNumbers in class GenMethods cannot be applied to given types;
uniqueNumbers(dnumbers, uniques);
^

The reason is that (in both cases) “inferred type does not conform to equality constraints” (ie,
when the method is invoked, the compiler cannot determine the value of E). When the uniques
list type is declared with “Consumer Super” rule, everything starts working:

static <E> void uniqueNumbers(List<E> numbers, List<? super E> uniques) {
for (E n: numbers)

if (!uniques.contains(n)) uniques.add(n);
}

since E is inferred to be Number, and there is the full type compliance at run time. (The first
argument List<E> numbers can be declared as List<? extends E> numbers but this does not
change neither the compilation, not execution.) The full code is in GenMethods.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 9 / 14

http://cs.anu.edu.au/student/comp6700/examples/generics/GenMethods.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

PECS Principle: to both parties

Let list be a List<T> of elements of the type T which can be compared, ie T implements
Comparable<T>. With this property, it is well defined to ask “what is the maximum element in
the list list”. The method max declaration will involve a recursive type bound:

public static <T extends Comparable<T>> T max(List<T> list) {...}

(the implementation body is pretty straightforward, it involves an iterator since one has to
compare each successive pair of the elements). But if to apply the PECS rule, the Comparable
should be treated as consumer (Comparable and Comparator are always consumers!), and the
list is obviously considered as a producer. Therefore, the more general declaration should be:

public static <T extends Comparable<? super T>> T max(List<? extends T> list);

This is an example (a rare one, outside APIs) of type parameter containing the recursive wildcard
bound of both types.

With the declaration like this, the local iterator used in the body must be also declared as
Iterator<? extends T> it = list.iterator(); to pass the compilation.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 10 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Type Erasure and Reification

The question: How type parameters are dealt with in JVM (at the level of bytecode)? has a
surprisingly simple answer: “They ain’t!” Type parameters are not types themselves: When
compiled, the generic type information is totally erased: the Java uses the type erasure technique
to interoperate freely with legacy code that does not use generics.

class A<T> {
private T field;
public A (T param) { this.field = param; }
public T getField() { return this.field; }

}

when compiled, becomes “just” A.class, and

A<String> aS = new A<String>("I get it!");
A<Integer> aI = new A<Integer>(100);
as.getClass() == aI.getClass(); // returns true

Unlike generic containers, the old “quasi-generic” type arrays T[] do retain their type information
(the value of T of the arrays elements), and they enforce this type constraint at run-time. Arrays
are reified types unlike generics. Reifiable types also include primitives, non-parameterised types,
parameterised types with unbound wildcards (eg, List<?>), raw types and arrays whose elements
are also reifiable. The full story of reifiable and erased types in Java is an abstruse one.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 11 / 14

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Did we screw it up?” (simple answer)

“Hum… I dunno, but it’s useful, JFC and stuff”. Yet —

1 When students first see the API with thousands of classes, they despair. I used to be able to
tell them, “That’s OK, at least the language itself is very simple.” But that was before this:

static <T extends Object & Comparable<? super T>> T
Collections.max(Collection<? extends T> coll);

(Cay Hortsmann’s interview Java Champion, Feb 2008))

2 “I am completely and totally humbled. Laid low. I realise now that I am simply not smart at
all. I made the mistake of thinking that I could understand generics. I simply cannot. I just
can’t. This is really depressing. It is the first time that I’ve ever not been able to understand
something related to computers, in any domain, anywhere, period.”

3 “I’m the lead architect here, have a PhD in physics, and have been working daily in Java for
10 years and know it pretty well. The other guy is a very senior enterprise developer (wrote
an email system that sends 600 million emails/year with almost no maintenance). If we can’t
get [generics], it’s highly unlikely that the ‘average’ developer will ever in our lifetimes be
able to figure this stuff out.” (both citations by Josh Bloch at JavaPolis 2007.)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 12 / 14

http://java.sun.com/developer/technicalArticles/Interviews/community/horstmann_qa.html

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Did we screw it up?” (difficult answer)

Yes, they did! Otherwise, how else would this be possible:

public class Unbelievable {
static Integer i;
//static int i; // use this instead of previous and ... surprise!
public static void main(String[] args) {

if (i == 42)
System.out.println("Unbelievable");

else
System.out.println("Unbelievable still");

}
}

Guess what will be printed, and then compile and run to test yourself! Why is this happening?
Again, the ugly beast of null (see Exceptions Lecture) rises its head.

“We simply cannot afford another wildcards” (Joshua Bloch’s talk at JavaPolis2007 while talking
about the prospects of introducing closures into the language; Closures are what now become
λ-expressions).

Remark: despite a few (moderate) warts exhibited by lambdas, it turns out they are less
controversial language feature than generics. Kudos by Brian Goetz and other guys!

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 13 / 14

http://cs.anu.edu.au/courses/comp6700/lectures/P5.pdf

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient, Ch. 6.3, 6.4, 6.5
Oracle’s Java Tutorial

Generic Methods
Wildcards
Restrictions on Generics

Joshua Bloch’s “Effective Java”, Ch. 5, esp. Item 28 (I followed this exposition here)
Maurice Naftalin and Philip Wadler’s book “Java Generics and Collections” (one of the most
complete and consistent exposition of this abstruse subject)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Methods March 2017 14 / 14

http://docs.oracle.com/javase/tutorial/java/generics/methods.html
http://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
http://docs.oracle.com/javase/tutorial/java/generics/restrictions.html

