COMP6700/2140 Generic Types

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

24 March 2017

«O>» «Fr «Z>r «E» NG

http://cs.anu.edu.au/courses/comp6700/lectures.html#O8

Generic Programming

Often we want to write code that works with objects of different types, without specifying the
particular types involved. How can we do this without sacrificing the safety of compile-time type
checking?

Use a generic type — a type that is parameterized over other types e.g. ArrayList<T>

Prior to Java 5, the only generic type was Array, “[], where the type of its elements could
regarded as the parameter-type: T[] "=" Array<T>.

Other data structures (Vector, List, Hashtable, ..) allowed objects of any type, but there was
no way to declare (or ensure) that a data structure contained type-homogeneous elements. Even
if all your elements in a Vector were of a single type e.g. String, when you extracted them, the
explicit cast was required, since the return type of the extracted element was 'Object":

Vector v =
String str = (String) v.elementAt(i);

As well as cluttering the code, the cast operation may result in a run-time error if a non-String
element was previously inserted.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 2 /15

Parameterized Types

Java 5 introduced generic types. A generic type is a class or interface which is defined with other
classes or interfaces as parameters. The actual type values are provided during instantiation
(similar to method’s invocation with actual parameters).

class A<T> { // more than one type parameter can be used, class A<E,K>
private T field;
public A (T param) {
this.field = param;
}
public T getField() {
return this.field;

}

Instances of a generic class are defined with the type parameter given a value — an existing type:

A<String> aS = new A<String>("I get it!");
A<Integer> al = new A<Integer>(100); // autobozing: 100 -> (Integer)100

Type parameters are not types themselves! There is no class T defined anywhere in the API.
The type parameter T is not a part of the class A name (compiler removes generic information
from the class definition — so called type erasure — and A.java + A.class). Examples:
Cell.java, ClassTest.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 3 /15

http://cs.anu.edu.au/courses/comp6700/examples/generics/Cell.java
http://cs.anu.edu.au/courses/comp6700/examples/generics/ClassTest.java

Generics: Naming Conventions

Naming guidelines: type parameter names are single, uppercase letters, which is quite different
from the variable naming convention — the difference between type variable and an ordinary class
or interface name should be very clear. The most commonly used type parameter names:

E — Element (in the collection type DS)

K — Key (in Hashtable and the like)

V — Value (in Hashtable and the like, Hashtable<K,V>)
N — Number (of Number type)

T,S,U,V — Type (anything, really)

© 06 06 0 o

Syntax enhancement in JDK 7

Instantiating a generic container is now easier. Instead of
Map<String, List<Trade>> trades = new TreeMap<String, List<Trade>> ();

use the diamond operator <>:

Map<String, List<Trade>> trades = new TreeMap<>();

and compiler will select the right type values from the left side.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 4 /15

Generic constructors and methods

Type parameters can also be used within method and constructor signatures to create generic
methods and generic constructors. Similar to declaring a generic type, but the type parameter's
scope is limited to the method or constructor in which it's declared.

public class BoxG<T> { //"borrowed” from Java Tutorial
private T t;
public void add(T t) { this.t = t; }
public T get() { return t; }

public <U> void inspect(U w){ // o method with a parameterized parameter type
System.out.println("T: " + t.getClass().getName());
System.out.println("U: " + u.getClass().getName());

}

public static void main(String[] args) {
BoxG<Integer> integerBox = new BoxG<Integer>();
integerBox.add(new Integer(10));
integerBox.inspect("some text");

}
The output (BoxG.java):

T: java.lang.Integer
U: java.lang.String

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 5 /15

http://cs.anu.edu.au/courses/comp6700/examples/generics/BoxG.java

Generic Static Methods

Static methods may also be parameterized:

for (Box<U> box

public static <U> void fillBoxes(U u, ArrayList<Box<U>> boxes) {
: boxes) {
box.add(u);

Fruit pineapple

} // assuming that this is a part of a mon-genmeric class Boz definition

The type parameters are included in the method call:

ArrayList<Box<Fruit>> fruitBoxes

Box.<Fruit>fillBoxes(pineapple, fruitBoxes);
necessary:

new Fruit("pineapple", 3.0); // creating a 3kg heavy pineapple
= new ArrayList<Box<Fruit>>();

Compiler can infer the type value of the parameter itself, so the explicit declaration isn’'t often

Box.fillBoxes(pineapple, fruitBoxes); // compiler infers that U is Fruit.
Alexei B Khorev and Josh Milthorpe (RSCS, ANU)

COMP6700/2140 Generic Types

24 March 2017 6 /15

Bounded Type Parameters, Sub-typing and Wildcards

A generic class definition may involve manipulations which do not make sense for every type, e.g.
addition of two instances of the parameter type. In such case, one would like to constrain the
type parameter values used in instantiation.

Such a constraint is declared via bounded type parameters. (Example: BoxBT .java):

public <U extends Number> void inspect(U w){ ... } // U is (sub-)type of Number
class CMP<T extends Number & Comparable<T>> { ... } // T is also comparable

With such a bound, the invocation integerBox.inspect("some text") is illegal because the
value of the type parameter U is String which does not extend Number.

Generic classes may also have bounded type parameters.

Sub-typing of parameterized types: Integer is a subtype of Number, but Box<Integer> is not a
subtype of Box<Number> (see diagram on the a few slides below). The method

doSomething (Box<Number> n) will not accept a parameter of type Box<Integer>. The right way
to declare such methods is to use wildcards (demo in BoxWC java):

public void doSomething(Box<? extends Number> box) {... // upper bound wildcard
public void doSomething(Box<? super Integer> box) {... // lower bound wildcard

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 7/15

http://cs.anu.edu.au/courses/comp6700/examples/generics/BoxBT.java
http://cs.anu.edu.au/courses/comp6700/examples/generics/BoxWC.java

Wildcard Rules

The theory behind sub- and super-typing can be quite confusing. Some attempts to explain it in
an accessible manner may result in dissatisfaction and feeling of being intellectually insulted —
as, for example, the old version of the Java Tutorial. Generics section with lions, birds and cages
“explanations” (no longer offered online).

At the first encounter, it is better to postpone attempts to develop the full understanding of how
and why this works, and to accept the following principles and apply them without much

deliberation:

The Get and Put Principle

o use an extends wildcard when you only get values out of a structure,
o use a super wildcard when you only put values into a structure,
o and don't use a wildcard when you both get and put.

Another way to put it: PECS: producer extends, consumer super.

o Producer: <7 extends T>
o Consumer: <? super T>

Example: GenMethods.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 8 /15

http://docs.oracle.com/javase/tutorial/java/generics/index.html
http://cs.anu.edu.au/courses/comp6700/examples/generics/GenMethods.java

Arrays and Generic Lists

The temptation to use both arrays and generic lists in the same code should be avoided. Try to
use only one data structure: when performance is the ultimate goal, use arrays (but be aware of
the cost of copying if there will be many add-remove operations); if you primarily need flexibility,
use generic lists and choose their implementation carefully (ArrayList or LinkedList).

The reason arrays and generic lists mix badly together is their very different behaviour during
compilation and run-time: arrays provide run-time type safety but not compile-time type safety
and vice versa for generics.

o Arrays are reified and covariant — they retain and enforce their type information, and their
subtyping behaviour is the same as that of their elements: if Sub is a subtype of Super, then
Sub[] is a subtype of Super[]; this allows to treat arrays like “ordinary” types.

o Generic Lists are erased and invariant — compilation
removes any information about the type parameter. Even if T1 extends T2, List<T1> is
not a subclass of List<T2>.

For these reasons, one cannot create an array of a generic type, a parameterized type, or a type
parameter. All these array creations are invalid: new List<E>[], new List<String>[] and new
E[]. All will result in generic array creation errors at compile time (because it is not type safe).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 9 /15

Taxonomy of Generic Types

java.lang.Number is the parent to all wrapper classes of primitives except bool and char.
Although Integer is a subclass of Number, List<Integer> is not a subclass of List<Number>:

S

List<Object> List<? extends Number>

List<?>

List<? extends Integer> List<Number>

List<Integer>

Taxonomy of the generic List types

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 10 / 15

Use of Wild Cards

A generic method to sum the elements of a generic List

static double sum(List<? extends Number> list) {
double sum = 0.0;
for (Number n : list)
sum += n.doubleValue();
return sum;

The wildcard “7?" indicates that the method sum requires a List of any subtype of Number
(including itself) — the bounded wildcard with an upper bound.

A bounded wildcard with a lower bound List<? super Integer> matches any super-type of
List<Integer> (including itself):

@ List<Integer>

@ List<Number>

@ List<Serializable>

@ List<Comparable<Integer>>
® List<Object>

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 11 /15

Generics Glossary of Terms

(from Joshua Bloch's Effective Java, 2ed)

Term

Parametrised Type
Actual Type Parameter
Generic Type

Formal Type Parameter
Unbounded Wildcard Type
Raw Type

Bounded Type Parameter
Recursive type bound
Bounded wildcard type
Generic Method

Type Token

Example

List<String>

String

List<E>

E

List<?>

List

<E extends Number>

<T extends Comparable<T>>
List<? extends Number>
static <E> List<E> asList(E[] a)

String.class

Alexei B Khorev and Josh Milthorpe (RSCS, ANU)

COMP6700/2140 Generic Types

24 March 2017

12 /15

The Dream of Java... Denied?

Back in 1995... “The Feel of Java”

Java is a blue collar language. It’s not PhD thesis material but a language for a job.
Java feels very familiar to many different programmers because we preferred
tried-and-tested things (James Gosling “Feel of Java”, Talk at OOPSLA 1996).

After Generics became part of the language

@ "l am completely and totally humbled. Laid low. | realise now that | am simply not smart at
all. | made the mistake of thinking that | could understand generics. | simply cannot. | just
can't. This is really depressing. It is the first time that I've ever not been able to understand
something related to computers, in any domain, anywhere, period.”

@ “I'm the lead architect here, have a PhD in physics, and have been working daily in Java for
10 years and know it pretty well. The other guy is a very senior enterprise developer (wrote
an email system that sends 600 million emails/year with almost no maintenance). If we can’t
get [generics], it's highly unlikely that the ‘average’ developer will ever in our lifetimes be
able to figure this stuff out.” (both citations by Josh Bloch at JavaPolis 2007.)

If you want to become a Java generics expert, read Angelika Langer’'s 427-page (!) Java Generics
FAQ (also there is a book “Java Generics and Collections” by Maurice Naftalin and Philip
Wadler, O'Reilly 2006). But first ask yourself: “Can | go to C++ or Scala instead?”

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 13 /15

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.pdf
http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.pdf

Generics Intimidation

Cay Hortsmann (interview Java Champion, Feb 2008)

When students first see the APl with thousands of classes, they despair. | used to be able to tell
them, “That's OK, at least the language itself is very simple.” But that was before this:

static <T extends Object & Comparable<? super T>> T
Collections.max(Collection<? extends T> coll);

As a student, you need to stay within a safe subset of the Java language and the API so that you
can use it as a tool to learn some good computer science.

Joshua Bloch (talk at JavaPolis2007): “We simply cannot afford another wildcards".

“Typical” declarations and compiler errors and warnings involving generics:

Enum<E extends Enum<E>> { ... };

<T extends Object & Comparable<? super T>>
T Collections.max(Collection<? extends T> col) ;

public <V extends Wrapper<? extends Comparable<T>>>
Comparator<V> comparator() { ... };

error: equalTo(Box<capture of ?>) in Box<capture of 7> cannot
be applied to (Box<capture of 7>)

equal = unknownBox.equalTo (unknownBox)
Arrays.asList(String.class, Integer.class) // Warning!

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Generic Types 24 March 2017 14 / 15

http://java.sun.com/developer/technicalArticles/Interviews/community/horstmann_qa.html

BN
Further Reading

o Horstmann Core Java for the Impatient, Ch. 6.1, 6.2, 6.3(*), 6.4(*) 65(*) 6.6
o Oracle The Java Tutorials: Generics

o The follow up “extra-curricular” Lecture on Generic Methods

«AO> «F>r «=)r « =) Q>

http://docs.oracle.com/javase/tutorial/java/generics/index.html
https://cs.anu.edu.au/courses/comp6700/lectures/O8.2.pdf

