
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Software Creation and Quality

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 1 / 25

http://cs.anu.edu.au/courses/comp6700/lectures.html#P8


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

Software Development Cycle
Software Quality
Elements of Software Design
Notations for Software Design: UML
Agile Development, DevOps etc

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 2 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Software Development Cycle

A software project normally begins because a client (or a computer hacker, or whoever) has a
problem to solve and money (or time) to spend. If not abandoned midway, the software
undergoes the following life cycle:

1 Analysis
2 Design
3 Implementation
4 Integration and Testing (V&V, performance, usability etc)
5 Deployment
6 Maintenance/service/support

In the analysis phase, the requirements of your software are defined. You try to understand the
problem that the customer has given you in as much detail as you can. Many large software
projects will not have a single clearly defined problem to solve but will be required to exhibit
certain behaviour for particular use cases. The output of this phase is a software requirements
specification (SRS) document written in compliance with the industry standards (eg, IEEE Std
830-1998).

The most important part of the requirements are functional requirements, which specify the
intended behaviour of the system. Analysis should not focus on how the program will satisfy the
requirements, but it can define performance criteria such as speed and memory requirements (they
represent non-functional requirements — performance constraints, availability, accessibility etc).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 3 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Software Design
Design is concerned with a plan about how you might implement your software system. Design
phase begins with formulating the so called Use Cases, which is a technique for capturing
functional requirements of systems. “Use cases allow description of sequences of events that,
taken together, lead to a system doing something useful” (Bittner and Spence). Each use case
provides one or more scenarios that convey how the system should interact with the users called
actors to achieve a specific business goal or function.

The use case analysis allows the designers to establish and define (if they use OO approach) the
system classes, their relationships and their data attributes and their methods (which must be
described in terms of their contact and the most essential elements of implementation). The
output of this phase is the Class Diagrams, which constitute the static structure of the system
under development.

The dynamic structure is captured in the State Machine Diagrams. The State Machine is an
abstraction of object’s life cycle, akin to a class being an abstraction to all its instances. There
are other useful diagrammatic techniques for representing the behaviour of objects, class
collaborations and so on). Most often used are so called Sequence and Collaboration Diagrams.
These are complimentary ways to realise the use cases using the structural and behavioural
characteristics of the system, and thus to test the design against the functional requirements.

The would be informal (somewhat artistic rather then scientific or engineering) approach to
design software can be made more precise and better defined (at least for communication) via the
use of design notations. The de facto industry standard for the design notations is represented by
the Unified Modelling Language (UML).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 4 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Software Development Methodologies, 1

In the implementation phase you write and compile program code. The output of this phase is
the completed program. The unit testing is to be done during this phase!

In the integration and testing phase, you run integration tests to verify that the program as whole
works correctly and that it satisfies all of the requirements. The output of this phase is a report
describing the tests that you carried out and their results.

In the deployment phase, the program gets installed and used in its target environment. (Some
deployment characteristics can be also formalised in the design, the UML has a specialised set of
notation for this, too.)

The nature of a software project is that it can get out of control very easily. Because of this,
software engineers put much effort into thinking about managing process. When formal software
processes were first introduced in the 1970s, engineers had a very simple model of these phases
which they called the waterfall model. The output of one phase was meant to spill into the next
like water falling down a set of pools as in the figure.

The waterfall model is is too rigid: It is very difficult to immediately come up with a perfect
requirements specification (partly because customers do not actually know what they really
want!). It was quite common to discover in the design phase that the requirements were
inconsistent or that a small change in the requirements would result in a much better system.
But the analysis phase was over, so the engineers had to build the inferior system with its errors
and all! When the design was actually implemented, it was often found that the design was not
perfect and so on.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 5 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Waterfall Model

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 6 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Software Development Methodologies, 2

One way to remedy the waterfall model deficiencies is the iterative waterfall model (“waterfall
with up-flow”). This model is taught to our software engineers in their project management
course. Students are encouraged to translate these phases into a timeline for their specific project.

Yet another improvement is the spiral model (introduced by Barry Boehm). The early phases of
this model focus on the construction of prototypes. These are small systems which illustrate the
behaviour of one part of the larger project. For example, a GUI prototype could be built to show
the customer how it might look (without implementing any functionality). Other prototypes
could be built to test out complicated algorithms, to test out integration with external systems, or
to profile system performance.

One of the dangers of the spiral model is that an excessive reliance on prototypes may cause
engineers to be too relaxed about actually delivering on the overall system requirements. Another
alternative is the “Rational Unified Process” (RUP) — see Grady Booch, James Rumbaugh and
Ivar Jacobson, “The Unified Modeling Language User Guide’‘, 2nd Ed., Addison Wesley, 2005,)
which was developed by the inventors of the Unified Modelling Language (UML). This has a
complicated set of “activity levels” as shown in Figure 3, Chapter 16 of Horstmann. A related to
RUP approach is the so called Capability Maturity Model (CMM) (Shayne Flint is an expert).
Another quite trendy methodology is “extreme programming” (see Kent Beck, “Extreme
Programming Explained”, Addison-Wesley, 1999) which focuses on a set of programming
practices rather than a formal process. The methodology envisions a constant interaction with a
representative of the customer and regular releases of useful systems which complete part of the
requirements.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 7 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Spiral Model

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 8 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Product Software Quality

All software methodologies aim at achieving software productivity and software quality
enhancement.

Software quality is a two-face Janus, its meaning is somewhat different for users and developers.
The users (in broad sense, which may include developers too) are concerned with the product
quality, while developers are affected by the code quality.

As product, software can be assessed against:

conformance to requirements or program specification (validation, 1st ‘v’ of V&V)
reliability
usability
correctness and completeness (verification, 2nd ‘v’ of V&V, “fit for purpose”)
absence of bugs
fault tolerance (very important for mission critical systems)
extensibility and maintainability
documentation

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 9 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Code Software Quality

As code, software can be assessed against:

readability (adherence to coding standard)
ease of maintenance, testing, debugging, fixing, modification and portability
low (lowest possible) complexity
presence of the test code (test class companions for production classes)
code self-documentation (like Doc comments)
optimal resource consumption: memory, CPU, GPU, bandwidth, threads etc
size of the (static) code analysis tool (lint, and modern OO tools, like PMD, FindBugs,
Jackpot, Commander in Intellij IDEA) output

There are well developed techniques (supported by tools) to improve the code quality, eg,
Refactoring (code modification without changing its external behaviour, the classical exposition in
Martin Fowler’s book Refactoring, and on his web site, link above).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 10 / 25

http://www.refactoring.com/


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What Software Design Involves

Set of rules to obey and steps to make

1 Discovering classes (tangible things, roles, incidents, interactions, specifications) — they
must be abstractions!

2 Defining non-functional attributes of classes — abstractions of “atomic” (non-derivable)
structural characteristics of a class (notional slots, value holders)

3 Defining operational attributes of classes — behavioural characteristics of a class (actions
and functions); derived attribute values must be computed with functions for consistency

4 Relating classes (dependencies, associations, constraints)
5 Discovering behaviour of classes (object states) — not here, not now!
6 Communicating objects (state machines, signals, events) — not here, not now!
7 Verifying the design: sequence and collaboration diagrams

[all this if you are still “serious” about an OO-based approach, and want to use the UML and
other old hats]

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 11 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unified Modelling Language

UML is a set of graphical notations (diagrams) backed by a single meta-model to describe and
design software systems, especially SS constructed via Object Oriented technology. Actually, the
UML means three different things:

A sketch of a software system — for developing, reverse engineering and communicating the
design, can be incomplete and crude.
A blueprint — as normally practiced in the industry, often done with CASE tools, aims at to
be comprehensive, but lacks precise semantics and needs humans to interpret and translate
(implement) it into the working code.
A fully fledged programming language — relies on precise semantics of all graphical elements
(what a box representing UML class means, what does an arrow connecting two boxes mean
etc — the same graphical elements may have quite different meaning when used in different
UML diagrams, or even on the same UML diagram), needs a defined meta-model (the
UML’s meta-model is itself defined in terms of a UML subset); the product is a UML model
(here it means a complete description of the system using UML diagrams and a constraint
language, like Object Constraint Language) which requires compilers to translate it into the
target code (there is lot more to this than just a code generation, take COMP3110 to learn
more). Some of the industry greats (most notably, David L. Parnas) believe that precise
definition of the design notations is unachievable (“UML are bad idea”), and urge the
software designers not to delude themselves.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 12 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UML Class Diagrams

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 13 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UML Class Associations

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 14 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UML Aggregation and Composition

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 15 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UML Classification and Generalisation

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 16 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UML Dependencies and Constraints

Anything (class, association, operation etc) can be a subject to constraint. The constraint can be
shown inside a UML note within a pair of braces {..}. Constraints can be expressed in a natural
language, pseudo-code or (better, yet) in Object Constraint Language. A simple example of an
operation constraint (precondition) is shown on the previous slide “UML Classification and
Generalisation” in red.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 17 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

JUnit Class Design

A case study for UML use in the software design is represented by the JUnit framework.

The small design for a small (yet so effective) system includes a number of classes and interfaces,
various kinds of association, and design patterns which are codified recipes to solve recurrent
design problems. The 1995 GoF catalogue offered 23 standard design patterns for the OO design
of general-purpose systems. Earlier, we have encountered the Observer and Visitor design pattern.

The detailed design of JUnit (in the larger context of the Eclipse IDE) is discussed in the E.
Gamma and K. Beck’s book “Contributing to Eclipse. Principles, patterns, plugins”.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 18 / 25

https://en.wikipedia.org/wiki/Design_Patterns


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Agile Development

Dissatisfied with software development practices, in 2001 a group of developers got together and
formulated the rules of Agile Software Development, known as Agile Manifesto

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 19 / 25

http://www.agilemanifesto.org


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DevOps

DevOps [from Development and IT Operations] is latest “big thing” in software development
(and services). According to Wikipedia it is a

culture, movement or practice that emphasises the collaboration and communication of
both software developers and other information-technology (IT) professionals while
automating the process of software delivery and infrastructure changes. It aims at
establishing a culture and environment where building, testing, and releasing software,
can happen rapidly, frequently, and more reliably.

The (absolutely) same principles are claimed to be the
cornerstone of Agile Development and (what followed
it) Continuous Integration (which is, given how
generally and tool-agnostically the Agile principles are
formulated, is a realisation of Agile Philosophy on an
integrated platform of tools, like Jenkins for CI, JUnit
and other testing frameworks like Spock for testing,
Sonar for Quality Assurance and so on).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 20 / 25

https://en.wikipedia.org/wiki/DevOps


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DevOps Toolchain
Understood simply as a set of practices supported by tools, DevOps is a more reasonable
methodology. The processes (stages of life cycle) and associated tools are:

Code — Code Development and Review, continuous integration tools:
Jenkins, Travis, etc

Build — Version control tools, code merging, Build status
Git, Mercurial, Bazaar etc
Ant, Maven, Gradle etc

Test — Test and results determine performance
JUnit Testing Framework
Spock

Package — Artifact repository, Application pre-deployment staging
Maven
npm (for Javascript)

Release — Change management, Release approvals, release automation
Sonar

Configure — Infrastructure configuration and management, Infrastructure as Code tools
Monitor — Applications performance monitoring, End user experience

Important aspects — virtualisation, containerisation, cloud-based applications
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 21 / 25

https://jenkins-ci.org
http://junit.org/junit4/


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How to begin

Fear of coding and how to avoid it

“Programming is an art of debugging a blank sheet of paper (or, in these days of on-line
editing, the art of debugging an empty file).” (of unknown origin)
“Start with the Most Difficult Part” (D. Spinellis), because:

1 At the beginning, there is no design constraints, and hence we have maximum freedom to tackle the
most difficult part. When working on easier parts at the end, the existing constrains are less
restraining and give helpful guidance.

2 Early shrinking of the project’s cone of uncertainty (rapid reduction in the project’s unknowns) —
good for project management (decisions about budget, planning, staffing etc).

3 Human nature: drive and enthusiasm are highest at the start, while at the end the common situation
is burn-out, disillusionment, boredom.

To understand this rather paradoxical advice, one should read the original article Diomidis
Spinellis, “Start with the Most Difficult Part” (IEEE Software, March/April 2009, p. 70–71)
“When faced with a problem you don’t understand, do any part you do understand, then
look at it again.” (G. Booch in Object-Oriented Design with Applications citing from Robert
Heinlein’s The Moon is a Harsh Mistress)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 22 / 25

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4786956
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4786956


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How to carry on

All principles and methodologies of software development are rules.

No Rules are Universal
All Rules Need Context

Systems nowadays are so complex…

How do you know
What to do?

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 23 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

PID Controller Principle

Proportional-Integral-Derivative stability mechanism used in industrial control systems

1 Find out where you are
2 Take a small step towards your goal
3 Adjust your understanding based on what you

learnt
4 Repeat
5 [additional] When faced with two or more

alternatives that deliver roughly the same value,
take the path that makes future changes easier

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 24 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for further study and ideas?

Agile Manifesto and its Twelve Princiles
Agile is Dead by Pragmatic Dave Thomas (keynote address at GOTO Amsterdam 2015)
DevOps in Practice by Danilo Sato
Diomidis Spinellis Start with the Most Difficult Part (IEEE Software, March/April 2009, p.
70–71)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Software Creation and Quality May 2017 25 / 25

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/principles.html
https://www.youtube.com/watch?v=a-BOSpxYJ9M
https://pragprog.com/book/d-devops/devops-in-practice
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4786956

