COMP6700/2140 Scene Graph, Layout and Styles

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

«O>» <Fr «=Z» «E» Q>

http://cs.anu.edu.au/courses/comp6700/lectures.html#R2

Topics

@ Scene Graph, Scenes and Stages

@ Nodes: shapes, regions, panes, controls

@ Controls and Events

@ SceneGraph Visual Editor

® Properties

® fxml/css: declarative approach to interface programming

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 2/16

Scene Graph of an Application

The JavaFX Scene Graph is the model of all graphical objects which exist in an application. It
contains information about what objects to display, what areas of the screen need repainting, and
how to render it all.

Root Group

v . ' l

[Leaf] [Leaf] [Node } [Circle] [Recfangle] [Region}

—— ——

[Leaf] [Leaf] [Text] [Imugeview]

Individual objects (buttons, shapes, text etc) are leaves; groups of objects are nodes. The scene
graph is rooted by a container, usually javafx.scene.Group or javafx.scene.Region, which is
“embedded” into a scene object (a window). Once set, an entire scene graph is passed as a
stage parameter to the (overridden) method javafx.application.Application.start()
method as the starting point of execution.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 3/16

“Hello World"” of JavaFX Layout

The Scene Graph creation has its own “Hello World” example The full code (with some naughty
additions is in HelloWorld.java):

Hollo World

public void start(Stage stage) {
Button button = new Button("Hello World");
button.setOnAction(e -> System.out.println("Hello World"));
StackPane pane = new StackPane();
pane.getChildren() .add(button) ;
Scene scene = new Scene(myPane);
stage.setScene(scene) ;
stage.setWidth(400);
stage.setHeight (300);
stage.show();

}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU)

[m] = = =
COMP6700/2140 Scene Graph, Layout and Styles

May 2017 4/16

http://cs.anu.edu.au/courses/comp6700/examples/javafx/HelloWorld.java

Ul components — Shapes, Panes, Controls

Every item in the scene graph is called a Node. Branch nodes are of type Parent, whose concrete
subclasses are:

o Group — a container which can impose to all its children those transforms, effects, and
states which applied to it

o Region — base class for all JavaFX Node-based Ul Controls, and all layout containers; can
be styled from CSS; Boxes and Pane are its children

o Control — base class for all user interface controls (via nodes in the scene graph which can
be manipulated by the user)

[
° e Text
: :
nE *=..
[} [l =
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles

= Q
May 2017 5/16

Shapes

Shapes are basic nodes that can be shown on a scene graph. The concrete subclasses (not
including 3D shapes, like Box, Cylinder, MeshView, Sphere):
o Line, Polyline, QuadCurve, CubicCurve

o (filled analogues) Rectangle, Polygon, Circle, Ellipse, Arc
o Path (can be closed and filled)

o Text (belongs to a different package javafx.scene.text, but is a special kind of shape)
Shapes have numerous properties to determine their geometrical position, size, orientation and
visual characteristics (colour, gradient, stroke type etc)

The API provides useful set-like binary shape operations:

o union

o intersect

o subtract

arion

subtvack

Alexei B Khorev and Josh Milthorpe (RSCS, ANU)

COMP6700/2140 Scene Graph, Layout and Styles

E T 9ac

May 2017 6/ 16

Controls

These are widgets (in the narrow sense of the world) — nodes (instances of Control's concrete
subclasses or their subclasses) in the scene graph which can be manipulated by the user:

Button, RadioButton, ComboBox, ChoiceBox and CheckBox,..
ListView, Pagination

MenuBar, Menu, Menultem

TextField, PasswordField, Hyperlink

Slider, ProgressBar

Separator, SeparatorMenultem

TableView and “associates”, TreeView,..

SplitPane, ScrollPane, TabPane and Tab,..

others

© ©6 6 6 ©6 6 06 ©0 ©

Control nodes can register events, and the program should define what happens as the response
to those events by setting up callbacks:

button.setOnAction(e -> <callback-action>);

Controls support explicit skinning (visual representation of user interface) to separate the
functionality and appearance. css-styling can be used to define the look and feel. All controls are
made of primitive shapes and panes, and can be scaled without compromising their visual
qualities (sharpness and noticeable pixelating).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 7/16

Layout Panes and Boxes

A set of panes (containers) for flexible arrangements of widgets within a scene graph:

The BorderPane class lays out its content nodes in top, bottom, right, left or centre
The HBox class arranges its content nodes horizontally in a single row

The VBox class arranges its content nodes vertically in a single column

The StackPane class places its content nodes in a back-to-front single stack

The GridPane class enables to create a flexible grid of rows and columns in which to lay out
content nodes

© ©6 06 0 o

o The FlowPane class arranges its content nodes in either a horizontal or vertical “flow”,
wrapping at the specified width (for horizontal) or height (for vertical) boundaries
A few others — study javafx.scene.layout API| package

©

A layout pane is parent node (in the scene graph), and it modifies the position of its children
(and also their size if they are resizable). Three sizes can be specified — preferred, minimum and
maximum (layout algorithms will try to optimise the size of children using those sizes). Panes
store their children in ObservableList; the methods Node.toFront () and Node.toBack() allow
to put a child in the first or last position.

One container can be nested inside another, and ultimately within a JavaFX Application.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 8 /16

|
Automating Layout: SceneBuilder

The assembly is automated via visual tools like SceneBuilder (Netbeans and other IDEs have
plugins for visual scene assembly):

= Scrol Bar (Horizonia)
1 ScrollBar (vertical
— Separator (Horizonta)
1 separator (Vertca)
< Slider (Horizontal)

G Slider (Vertical

1 Split Menu Bution

[Table Cobamn

Drag components from Library here

1 Textrield

e i [DEFAUT.

Desth Tes | T 5

“Drag, drop, resize, align, link” — the layout assisted with the SceneBuilder tool. The created Ul
is saved in a .fxml-file which can be loaded in the code of a program.
o

= = DA
‘Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 9/ 16

Declarative Programming in JavaFX: Ul Layout

The SceneBuilder tool saves a Ul as a fxml-file. The £xml format is an XML schema in which
XML-tag names match JavaFX class names, such that the content of fxml description file is
mapped into the Java code when it's loaded by the FXMLLoader class (an optional part of any
JavaFX application).

<StackPane prefHeight="375" prefWidth="500"
xmlns:fx="http://javafx.com/fxml"
fx:controller="steveonjava.Controller">

<children>
<ImageView fx:id="imageView">

</ImageView>

<Text fx:id="text" cache="true" text="The year’s at the spring,
.."/>
<Button fx:id="button" text="Play Again" onAction="#replay"/>
</children>
</StackPane>

Instead of labouring on the layout using Java's statements, use SceneBuilder to create it and load
the resulting £xml-file:

Parent root = FXMLLoader.load(getClass().getResource("app_layout.fxml"));
Scene scene = new Scene(root); o - _ -
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 10 / 16

Dar

Declarative Programming in JavaFX: CSS styling

Element styling: The fxml-file is complemented by a css-file that defines the styles (“skins”) of
application elements:

#text {
-fx-font-family: serif;
-fx-font-weight: bold;
-fx-font-size: 30pt;
-fx-fill: goldenrod;
-fx-effect: dropshadow(three-pass-box, black, 3, .5, 0, 0);

}
#button {
-fx-background-color: linear-gradient(darkorange, derive(darkorange, -80%));
-fx-background-radius: 24; -fx-padding: 12;
-fx-font-size: 16pt; -fx-font-weight: bold;
-fx-text-fill: white;
}

After the Ul layout description from a fxml-file (created by SceneBuilder) are loaded, the CSS
definitions also can be read in:
scene.getStylesheets() .add("app_styles.css");

o (=) = E = -
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 11 /16

Properties

Nodes (containers, layouts) and leaves (control elements, text, indicators like progress bar, and
views like scroll views, list views and tree views) — all have properties: shape, size, colour, effect
etc. When a node or a leaf element is created, its properties are set either explicitly, or by default;
they can be reset as a part of transition/animation effect later during program’s execution.

Text text = new Text("JavaFX technology is kinda cool");
text.setFont (Font.font ("Serif", FontWeight.BOLD, 30));
text.setFill(Color.GOLDENROD) ;

DropShadow dropShadow = new DropShadow();
dropShadow.setRaduis(3) ;

dropShadow.setSpread(0.5) ;

text.setEffect (dropShadow) ;

text.setCache(true);

root.getChildren() .add(text);

Remember to add a newly created element to its parent according to the scene graph (the last
statement above).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 12 /16

Properties and JavaBeans

The concept of properties of a object is not a basic Java feature (other languages — for example,
Python — have it as a natural part), but it is implemented in the so called JavaBeans model, a
technique to define a Java class with additional rules on how the state of its instances and the
methods one can invoke on them are defined. The name of fields and methods are tightly
constrained (together they form a bean property). A bean can control which methods are
exported (public) — by default, they are all public, but this can be modified at run time. Beans
can also detect events (like GUI widgets).

A Java class is a JavaBean if it's defined following these specification:

o It has only one public default constructor
o Is is serialisable (implements Serialzable interface)
o Has properties; a property is a private field which can clients can

o read/write,
o read only,
o write only;

the names of getter/setter methods must obey a naming convention

One reason to have properties is to simplify introspection.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 13 /16

More on Properties

Properties (not the system properties used, eg in Assignment One) are class attributes (backed
by fields) which can be read and set by getPropName () and setPropName (PropType pv). Unlike
normal get/set methods, the property get () can perform computation or data acquisition, and
set () can trigger a change notification which may reset other properties. Unlike Python Java
does not have a semantic support for properties @:

value = obj.property; // get-method is called under the hood
obj.property = value; // set-method is called

it has a simple class naming convention for the getter/setter pair backed by the properly
named field which can be recognised by a framework (java.bean) and/or a tool (an IDE etc) and
treated as property of thus derived name: a class with String getText() and void

setText (String s) methods is recognised as one possessing the property text.

A similar (in general, but different in details) property based description of components is used in
JavaFX. The main difference is that here, a property is an instance of an interface, not a bean. A
property object can have listener attached to it; this can be used to implement callbacks when
the property changes or needs to be changed (C. Hortsmann's example SliderDemo.java)

Label message = new Label("Hello, JavaFX!"); message.setFont(new Font(100));
Slider slider = new Slider(); slider.setValue(100);
slider.valueProperty() .addListener (property

-> message.setFont (new Font(slider.getValue())));

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 14 / 16

http://cs.anu.edu.au/courses/comp6700/examples/javafx/SliderDemo.java

Property Binding

Sometimes (not often!) it is convenient to bind properties to each other, such that when one of
them changes (eg, after a callback), another changes appropriately without an explicit callback
being set on the property owner (scene, shape etc).

In binding two properties in value, the code is actually simpler:

TextArea shipping = new TextArea();
TextArea billing = new TextArea();
billing.textProperty() .bindBidirectional (shipping.textProperty());

But when a property whose bound value has to be computed based on the value of another
property, things can get ridiculous because of the “straight jacket” of property interfaces involved
(which do not admit normal operations, and must be operated upon through the utility class
javafx.beans.binding.Bindings or similar). Compare two examples to see that binding not
always gives an advantage:

o MasterSlaveWithoutBinding.java
o MasterSlaveWithBinding.java

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Scene Graph, Layout and Styles May 2017 15/ 16

http://cs.anu.edu.au/courses/comp6700/examples/javafx/MasterSlaveWithoutBinding.java
http://cs.anu.edu.au/courses/comp6700/examples/javafx/MasterSlaveWithBinding.java

BN
Where to look for this topic in the textbook?

o Hortsmann’s Core Java for the Impatient (not covered)
o Hortsmann's Java SE 8 for the Really Impatient, Ch. 4.
o Oracle's JavaFX Tutorial

«AO> «F>r «=)r «E)» o>

http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

