
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Widgets, Events and Listeners

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Widgets, Events and Listeners May 2017 1 / 8

http://cs.anu.edu.au/courses/comp6700/lectures.html#R3

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Events and Callbacks
2 Programming callbacks:

Inner classes and their use in GUI
Lambda-expressions

3 Event-propagation effects
4 Event-filtering

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Widgets, Events and Listeners May 2017 2 / 8

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

User Interaction with a GUI Program
The interaction is carried out via a (new) flow of control mechanism — events:

Events are asynchronous
They alter the state of execution environment
They are detected by widgets (active control elements, provided by API)
Widgets are programmed to respond to an event occurrence, these responses are callbacks
Events can also be caused by the program itself (not by a user):

Timeout (or other type of time event)
A callback execution completion (ie, closing a progress bar)

Some callbacks are already defined by API
window events (resize, expose etc)

A “Hello World” of GUI events program is MouseEvents.java (an older, Swing-based example is
MouseSpy.java). The structure is standard:

1 A scene and a few shape objects on it are created, all can detect events (mouse events in
the example)

2 Each object (“widget”) is programmed to respond to one of the mouse events in a particular
way (by executing setOnMouseXXX(..) method on the object)

3 The scene (frame) and the event listener class (MouseListener) are combined into one in the
simpler example MouseSpy.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Widgets, Events and Listeners May 2017 3 / 8

http://cs.anu.edu.au/courses/comp6700/examples/javafx/MouseEvents.java
http://cs.anu.edu.au/courses/comp6700/examples/swing/MouseSpy.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Events and Event Properties
When a change occurs (user input etc), the application gets notified by an appropriate event. In
JavaFX, event is an instance of javafx.event.Event or its subclass — DragEvent, KeyEvent,
MouseEvent, ScrollEvent and others. To define custom event types, extend the Event class.

Event has properties:

Event type — an instance of EventType class, it’s determined by the “physical” source of
the event, eg KeyEvent.KEY_PRESSED, MouseEvent.MOUSE_RELEASED, ActionEvent.ACTION.
The event type form its own hierarchy rooted in Event.ANY. The “real” events are the leaves
in this tree, while the nodes correspond to particular widgets.
Source — an origin of the event, with respect to the location of the event in the event
dispatch chain. The source changes as the event is passed along the chain.
Target — a node on which the action occurred and the end node in the event dispatch
chain. A target is an instance of any class which implements EventTarget interface. The
target does not change, however if an event filter consumes the event during the event
capturing phase, the target will not receive the event.

Subclasses of Event have additional properties: MouseEvent includes information about which
button pushed, how many times, and the mouse position at that moment.

Once an event is detected by some node, it travels through an event dispatch chain, a sequence
of nodes connected by their presence on the same scene graph. Standard JavaFX elements have
their event dispatch chain already defined.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Widgets, Events and Listeners May 2017 4 / 8

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Event: Propagation, Filtering and Handlers
An event propagates through its event dispatch chain to the target where a programmed action
will take place. The event delivery from source to target takes four stages:

1 Target selection — based on internal rules, eg for a key event, target is the node which has
focus;

2 Route construction — initially, set by implementation of
EventTarget.buildEventDispatchChain() method, but can be modified by event filters
along the route process the event (sometimes event can be consumed before reaching its
target); in the example SimpleShapesAndTransitions.java, the dispatch chain for the “mouse
entered” event is primaryStage --> scene --> root --> circle (c1).

3 Event capturing — when the event reaches its target (we ignore filters at the intermediary
nodes of the chain which may consume the event) and is processed by a dedicated event
handler (which executes its code):
c1.onMouseEnteredProperty().set(e -> {

ft.stop();
ft.playFromStart(); // fading the colour of circle

});
4 Event bubbling — after event is processed by its target, it travels back to the root, and all

intermediary nodes, if they have registered event handlers, execute their code too (Ponder:
what effects can be realised in such scheme?). To prevent event bubbling from a node up,
the method consume() is called.

To learn (important!) details about the event delivery, study the JavaFX Tutorial chapter
Events/Event Handlers.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Widgets, Events and Listeners May 2017 5 / 8

http://cs.anu.edu.au/courses/comp6700/examples/javafx/SimpleShapesAndTransitions.java
http://docs.oracle.com/javafx/2/events/jfxpub-events.htm

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementation of Event Handlers: Anonymous Inner Classes
To make an element (node, leaf) react to an event, one must set an event handler property to be
an object which executes the handler code. Before Java 8, this required an anonymous inner class
— a standard Java technique to pass around code to execute. Although this object may be an
instance of any type that implements the EventHandler interface, in practice, it is usually an
anonymous inner class:

final Scene scene = new Scene(root, 600, 450, Color.WHITE);
final Rectangle rect = new Rectangle(...);
// setting rect's properties
// setting rect to rotate once by the angle 45 deg, around the pivot (410,200)
rect.getTransforms().add(new Rotate(45, 410, 200));
root.getChildren().addAll(rect);
/* scene is set to react to pressing "R"-key event; rotation (22.5 deg around
* rect's centre) is performed every time the key event is detected */
scene.onKeyPressedProperty().set(new EventHandler<KeyEvent>() {

@Override
public void handle(KeyEvent ke) {

if (ke.getCode() == KeyCode.R)
rect.getTransforms().add(new Rotate(22.5, 410, 200));

}
});

An example SimpleShapesAndTransitions.java illustrates event handler use for fading and motion
effects triggered by the user inputs.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Widgets, Events and Listeners May 2017 6 / 8

http://cs.anu.edu.au/courses/comp6700/examples/javafx/SimpleShapesAndTransitions.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementation of Event Handlers: λ-expressions

A modern and better approach to defining callbacks is to use λ-expressions or method references
instead:

// 2D arrays of circles and FadeTransitions (fts) are declared beforehand
CircleBuilder cb = CircleBuilder.create().radius(20);// implicitly final
for (int i = 0; i < 5; i++)

for (int j = 0; j < 5; j++) {
Circle theCircle = cb.centerX(100 + 60*i).centerY(100 + 60*j).build();
circles[i][j] = theCircle; // to avoid changing circles
theCircle.setFill(Color.color(i*0.2,j*0.2,1.0));
FadeTransition theTransition = ftb.build();
theTransition.setNode(theCircle);
fts[i][j] = theTransition; // to avoid changing fts (fade-transitions)
theTransition.setCycleCount(1);
circles[i][j].onMouseEnteredProperty().set(e -> theTransition.play());
circles[i][j].onMouseExitedProperty().set(e -> theTransition.pause());
circles[i][j].onMouseClickedProperty().set(e -> theCircle.setOpacity(1.0));

}

An example BuilderAtWork.java.java would create 3 more bytecode classes if anonymous inner
classes were used to implement callbacks. Even in a modest GUI applications there can be tens or
even hundreds of callbacks.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Widgets, Events and Listeners May 2017 7 / 8

http://cs.anu.edu.au/courses/comp6700/examples/javafx/BuilderAtWork.java.java

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Further Reading

Hortsmann’s Java SE 8 for the Really Impatient, Ch. 4.
Oracle JavaFX: Handling Events

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Widgets, Events and Listeners May 2017 8 / 8

http://docs.oracle.com/javase/8/javafx/events-tutorial/events.htm

