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Performance Measures and Models

Overview: Performance Measures and Models

granularity of parallel programs

parallel speedup and overhead

Amdahls Law

efficiency and cost

example: adding n numbers

scalability and strong/weak scaling

measuring time

Ref: Grama et al. sect 3.1, ch 5; Lin & Synder
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Performance Measures and Models

Granularity

MIMD divides computation into multiple tasks or processes that execute
in parallel

granularity: size of the tasks

coarse grain: large tasks/lots of instructions
fine grain: small tasks/few instructions

granularity metric:
tcompute

tcommunication

Would the startup part of communication time be better?

granularity may depend on numbers of processors (why?)
Case study: parallel LU factorization

aim: to increase granularity (why?)
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Performance Measures and Models

Speedup

the relative performance between single and multiprocessor systems
S(n) = execution time on single processor

execution time using p processors =
tseq
tpar

(should we use walltime or CPU time?)

tseq should be for the fastest known sequential algorithm

best parallel algorithm may be different

may also consider speedup in terms of operation count
Sop(p) = operation count rate with p processors

operation count rate on single processor

linear speedup: maximum possible speedup is n on n processors, i.e.
assuming no overhead, etc S(p) =

tseq
tseq/p

= p

super-linear speedup: when S(p) > p

may imply a sub-optimal sequential algorithm : go back and
re-implement parallel algorithm on 1 processor!
may arise from unique features of architecture that favour parallel
computation – suggestions?
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Performance Measures and Models

Parallel Overhead

factors that limit parallel scalability:

periods when not all processors perform useful work, including times
when just one processor is active on sequential parts of the code
load imbalance
extra computations not in the sequential code, e.g. re-computation of
intermediates locally (may be quicker than send from another
processor)
communication times

Jumpshot and VAMPIR are tools that give graphical display of
parallel computation. See also details on profiling an MPI application
on Raijin

timeline visualization

Time

Process 0

Process 3

Process 1

Process 2

}

Waiting to

send

Time to send

message

Computing

Startup
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Performance Measures and Models

Amdahl’s Law #1

Assume some part cannot be divided (f ), while rest is perfectly divided
(no overhead):

tpar = ftseq + (1− f )tseq/p

tp

Serial section Parallelizable sections

One processor

Multiple
processors

ts

ft s (1−f)ts

(1−f)ts

p processors

 /p

S(p) =
tseq

ftseq+(1−f )tseq/p = p
1+(p−1)f

S(p)
p→∞

= 1/f
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Performance Measures and Models

Amdahl’s Law #2: Speedup Curves

f = 0.05 f = 0.01

”Better to have two strong oxen pulling your plough across the country
than a thousand chickens. Chickens are OK, but we can’t make them work
together yet” (. . . or can we?)
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Performance Measures and Models

Efficiency and Cost

efficiency: how well are you using the processors

E =
tseq
tpar

/p

=
S(p)

p
× 100%

cost: product of the parallel execution time and the total number of
processors used

tpar × p =
tseqp

S(p)
=

tseq
E

cost optimal: if the cost of solving a problem on a parallel computer
has the same asymptotic growth as a function of the input size as the
fastest known sequential algorithm on a single processor
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Performance Measures and Models

Adding n numbers on n processors
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speedup over sequential is O( n
lg n )

cost is O(n lg n), so not cost optimal!
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Performance Measures and Models

Adding n numbers on p processors #1
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algorithm takes O(n/p lg p) to communicate numbers, then O(n/p)
to add partial sums. Thus total execution time is O(n/p lg p)

cost is O(n lg p) which is not cost optimal - either!!
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Performance Measures and Models

Adding n numbers on p processors #2
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algorithm takes O(n/p + lg p)

cost is O(n + p lg p) so if n = Ω(p lg p) (i.e. n ≥ p lg p), cost is O(n),
which is cost-optimal
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Performance Measures and Models

Scalability

Imprecise measure:

hardware scalability: does increasing the size of the basic hardware
give increased performance?

consider ring, crossbar, hypercube topologies and what changes as we
add processors

algorithmic scalability: can the basic algorithm accommodate more
processors?

combined: an increased problem size can be accommodated on
increased processors

consider effect of doubling computation size:

for two N × N matrices, doubling the value of N increases the cost of
addition by a factor of 4, but the cost of multiplication by a factor of 8.
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Performance Measures and Models

Gustafson’s Law: Strong/Weak Scaling

recall we assume a serial computation can be split to serial and
parallel parts: tseq = ftseq + (1− f )tseq and parallel time is given by
tpar = ftseq + (1− f )tseq/p and the speedup is S(p) = tseq/tpar
Amdahl’s Law: constant problem size scaling (strong scaling)
S(p) = p

1+(p−1)f
Gustafson’s Law: time constrained scaling (i.e. problem size is
dependent on processor count, weak scaling)

assumes parallel execution time tpar is fixed (for simplicity, assume
tpar = 1)
and the sequential time component ftseq is a constant
yielding a speedup of:
S(p) = p + (1− p)ftseq
speedup a line of negative slope rather the rapid reduction observed
previously
5% serial on 20 processors implies S(p) = 19.05 but under Amdahl’s
Law, S(p) = 10.26
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Performance Measures and Models

Hands-on Exercise: Performance Profiling
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Collective Communications in MPI

Collective Communications: Basic Ideas

synchronization: barrier to
inhibit further execution until all
processes have participated

e.g. use simple pingpong
between two processes

broadcast: send same message
to many processes

must define the source of the
message

scatter: 1 process sends unique
data to every other in group

gather: reverse of above (courtesy LLNL)

reduction: gather and combined with arithmetic/logical operation
result can go to just one process, or goes to all processes

All of these can be constructed from simple sends and receives, and all
require the group of participating processes to be defined.
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Collective Communications in MPI

MPI Communicators

a communicator is a group that MPI processes can join
MPI_COMM_WORLD is the communicator defined in MPI_Init(), and contains
all processes created at that point
these can be used to specify the group of processes in a collective
communication
they can also prevent conflict between messages, e.g. that are internal
to a library and those used by the application program

User

Process 0

User

Process 1

Library

Process 1

User

Process 2

Library

Process 0

User

Process 3
Communicator 1

Communicator 2Library

Process 2

Library

Process 3
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Collective Communications in MPI

Collective Operations and Communications

by definition, a collective operation in MPI requires all processes in
the specified communicator to participate

this is most often for a collective communication (but can also be for
communicator creation / destruction, I/O etc)
usually this provides a degree of synchronization as well
if any process fails to participate in the collective, you will get deadlock!

MPI collective communications provide convenient ways of
expressing widely-used communication patterns

they are normally also highly optimized, with algorithms optimized on

varying numbers of process,
small or large message sizes
various communication transports (e.g. shared memory, TCP/IP,
Infiniband)

It is worth learning them!
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Collective Communications in MPI

Simple MPI Collective Communications

MPI_Barrier(MPI_Comm comm): barrier synchronization for all processes (in
comm)

MPI_Bcast(void *buf, int count, MPI_Datatype dt, int root, MPI_Comm comm):
broadcast message from process root to all others

MPI_Reduce(const void *sbuf, void *rbuf, int count, MPI_Datatype dt, MPI_Op

op, int root, MPI_Comm comm): apply reduction op element-wise on send
buffer, storing result in receive buffer on process root

op may be MPI_MAX, MPI_SUM or any other well-known associative
operator on numeric types; or a user-defined operation

MPI_Allreduce(const void *sbuf, void *rbuf, int count, MPI_Datatype dt,

MPI_Op op, MPI_Comm comm): similar, except result is stored on all
processes.
Equivalent to MPI_Reduce(sbuf, rbuf, count, dt, op, 0, comm), followed by
MPI_Bcast(rbuf, count, dt, op, 0, comm).
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Collective Communications in MPI

Simple MPI Collectives Example

#define NP 4

2 int i, np, rank; MPI_COMM comm;

static int sbuf[NP], rbuf[NP], arbuf[NP];

4 MPI_Init (&argc , &argv); comm = MPI_COMM_WORLD;

MPI_Comm_rank(comm , &rank); MPI_Comm_size(comm , &np);

6 assert(np == NP); //i.e. invoked with mpirun -np NP ...

if (rank == 0)

8 for (i=0; i < np; i++)

sbuf[i] = i + 1;

10 MPI_Bcast(sbuf , np , MPI_INT , 0, comm);

MPI_Reduce(sbuf , rbuf , np, MPI_INT , MPI_SUM , 0, comm);

12 MPI_Allreduce(sbuf , arbuf , np, MPI_INT , MPI_SUM , comm);

MPI_Barrier(comm); // has no real effect here

sbuf:
0: 1 2 3 4
1: 1 2 3 4
2: 1 2 3 4
3: 1 2 3 4

rbuf:
0: 4 8 12 16
1: 0 0 0 0
2: 0 0 0 0
3: 0 0 0 0

arbuf:
0: 4 8 12 16
1: 4 8 12 16
2: 4 8 12 16
3: 4 8 12 16
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Collective Communications in MPI

MPI Scatter and Gather
int MPI_Scatter(const void *sbuf , int scount , MPI_Datatype sdt ,

2 void *rbuf , int rcount , MPI_Datatype rdt ,

int root , MPI_Comm comm);

4 int MPI_Gather(const void *sbuf , int scount , MPI_Datatype sdt ,

void *rbuf , int rcount , MPI_Datatype rdt ,

6 int root , MPI_Comm comm)

The scatter is equivalent to (extent(dt) is # bytes in dt):

assert (extent(sdt)*scount == extent(rdt)*rcount);

2 if (rank == root) //rank is process id , np is #processes in comm

for (i=0; i < np, i++) //sbuf holds np*scount elements of sdt

4 MPI_Send(sbuf+i*scount*extent(sdt), scount , sdt , i, tag , comm);

MPI_Recv(rbuf , rcount , rdt , root , comm , ...);

and its inverse, gather, is equivalent to:

1 MPI_Send(sbuf , scount , sdt , root , comm);

if (rank == root)

3 for (i=0; i < np, i++) //rbuf holds np*rcount elements of rdt

MPI_Recv(rbuf+i*rcount*extent(rdt), rcount , rdt , i, tag , comm ,

...);
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Collective Communications in MPI

MPI Collective Communication Example

#define NP 4

2 int np, rank; MPI_COMM comm;

int sbuf[NP*NP] = {1,2,3,4, 5,6,7,8, 9,10,11,12, 13 ,14 ,15 ,16};

4 static int rbuf[NP], gbuf[NP];

MPI_Init (&argc , &argv); comm = MPI_COMM_WORLD;

6 MPI_Comm_rank(comm , &rank); MPI_Comm_size(comm , &np);

assert(np == NP); //i.e. invoked with mpirun -np NP ...

8 // both send count and receive count equal np

MPI_Scatter(sbuf , 1, MPI_INT , rbuf , 1, MPI_INT , 0, comm);

10 MPI_Gather(rbuf , 1, MPI_INT , gbuf , 1, MPI_INT , 3, comm);

rbuf:
0: 1 2 3 4
1: 5 6 7 8
2: 9 10 11 12
3: 13 14 15 16

gbuf:
0: 0 0 0 0
1: 0 0 0 0
2: 0 0 0 0
3: 1 5 9 13
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Collective Communications in MPI

MPI All-to-all Collective Communications

MPI_Allgather(sbuf, scount, sdt, rbuf, rcount, rdt, comm) is like a gather,
but all processes have the combined result. Equivalent to:

MPI_Gather(sbuf , scount , sdt , rbuf , rcount , rdt , 0, comm);

2 MPI_Bcast(rbuf , np*rcount , rdt , 0, comm);

MPI_Alltoall(sbuf, scount, sdt, rbuf, rcount, rdt, comm) allows each
process to send a different message to all others. Equivalent to:

for (i=0; i < np, i++) //sbuf holds np*scount elements of std

2 MPI_Send(sbuf+i*scount*extent(sdt), scount , sdt , i, tag ,

comm);

for (i=0; i < np, i++) //rbuf holds np*rcount elements of rtd

4 MPI_Recv(rbuf+i*rcount*extent(rdt), rcount , rdt , i, tag ,

comm , ...);
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Collective Communications in MPI

MPI All-to-all Collectives Example

#define NP 4

2 int np, rank; MPI_COMM comm;

int i, sbuf[NP], rbuf[NP], gbuf[NP*NP];

4 MPI_Init (&argc , &argv); comm = MPI_COMM_WORLD;

MPI_Comm_rank(comm , &rank); MPI_Comm_size(comm , &np);

6 assert(np == NP); //i.e. invoked with mpirun -np NP ...

for (i=0; i < np; i++)

8 sbuf[i] = rank*np + i;

MPI_Alltoall(sbuf , 1, MPI_INT , 1, np, MPI_INT , comm);

10 MPI_Allgather(rbuf , np, MPI_INT , gbuf , np, MPI_INT , comm);

sbuf:
0: 0 1 2 3
1: 4 5 6 7
2: 8 9 10 11
3: 12 13 14 15

rbuf:
0: 0 4 8 12
1: 1 5 9 13
2: 2 6 10 14
3: 3 7 11 15

gbuf (all procs.):
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
Interpreting sbuf and rbuf across all processes as matrices, the all-2-all has
performed a transposition. Basis of an n-way || FFT (n = nl*np):

local nl-way FFT; transpose; do nl/np local np-way FFTs
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Collective Communications in MPI

MPI All-to-All Collectives (II): Reduce-Scatter

MPI_Reduce_scatter(sbuf, rbuf, rcounts, MPI_Datatype dt, MPI_Op op, MPI_Comm

comm): performs a reduction on sbuf (of size n= Σnp−1
i=0 rcounts[i]), and

sends ith segment (of size rcounts[i]) to process i, storing result in rbuf

#define NP 4

2 int np, rank; MPI_COMM comm;

int i, sbuf[NP], rbuf[1], rcounts [] = {1,1,1,1};

4 MPI_Init (&argc , &argv); comm = MPI_COMM_WORLD;

MPI_Comm_rank(comm , &rank); MPI_Comm_size(comm , &np);

6 assert(np == NP); // assert np == sum(rcounts)

for (i=0; i < np; i++)

8 sbuf[i] = rank*np + i;

MPI_Reduce_scatter(sbuf , rbuf , rcounts , MPI_INT , MPI_SUM , comm);

sbuf:
0: 0 1 2 3
1: 4 5 6 7
2: 8 9 10 11
3: 12 13 14 15

rbuf:
0: 24
1: 28
2: 32
3: 36
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Collective Communications in MPI

Varying Message Sizes in Collectives

so far, with gather, scatter, all-to-all, etc, the messages are all of
equal size

‘vector’ versions of these collectives allow us to specify differing
message sizes to and/or from each process

e.g.
MPI_Alltoallv(void *sbuf, int scounts[], int sdispls[], MPI_Datatype sdt,

void *rbuf, int rcounts[], int rdispls[], MPI_Datatype rdt, MPI_Comm comm)

is equivalent to:

for (i=0; i < np, i++) //sbuf holds np*scount elements of std

2 MPI_Send(sbuf+sdispls[i]* extent(sdt), scount[i], sdt , i, tag

, comm);

for (i=0; i < np, i++) //sbuf holds np*scount elements of std

4 MPI_Recv(rbuf+rdisps[i]* extent(rdt), rcount[i], rdt , i, tag ,

comm , ...);

Question: why does MPI provide us with collectives that are easily
expressed as combinations of other collectives?
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Collective Communications in MPI

Hands-on Exercise: MPI Collectives

Computer Systems (ANU) Advanced Messaging 31 Oct 2017 29 / 62



Collective Communication Algorithms
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Collective Communication Algorithms

Barriers

recall that a barrier is a point at which all processes must wait until
all other processes have reached that point
MPI_Barrier(MPI_Comm comm);

mutual exclusion: a barrier that prevents other processes from
entering the following region if another process is already in that
region

common in shared memory parallel programs
necessary for some MPI-2 operations

both are possible sources of overhead
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Collective Communication Algorithms

Barrier - Schematic
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Collective Communication Algorithms

Counter-based or Linear Barriers

0
P

Barrier();

Barrier();

Barrier();

Counter, C

Processes

P
1 n−1

P

Increment and

check for n

one process counts the arrival of the other processes

when all processes have arrived, they are each sent a release message
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Collective Communication Algorithms

Implementation

arrival phase: process sends message to central counter

departure phase: process receives message from central counter

send(P(master));
recv(P(master));

Barrier:

send(P(master));
recv(P(master));

Barrier:

recv(P(any));

send(P(i));

Master Slave Processes

Departure
phase

phase
Arrival for (i=0; i<p−1; i++) 

for (i=0; i<p−1; i++)

implementations must handle possible time delays

the central process is the bottleneck, cost is 2ts(p − 1) = O(p),
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Collective Communication Algorithms

Tree-Based Barriers

P
0

P
1

P
2

P
7

P
3

P
4

P
5

P
6

Arrival at

barrier

Departure

from

barrier

note: broadcast does not ensure synchronization

cost 2 lg p · ts or O(lg p)
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Collective Communication Algorithms

Butterfly Barrier (Butterfly/Omega Network)
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1st stage
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cost is 2 lg p · ts or O(lg p)
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Collective Communication Algorithms

Broadcast

the broadcast bcast(buf, m, root) can be a naively implemented as:

if (rank == root) {

2 for (i=0; i < p; i++)

if (i != root)

4 send(buf , m, i);

} else

6 recv(buf , m, root);

cost is (p − 1)(ts + mtw ) = O(p)! Using a tree-like structure:

(courtesy mpitutorial.com)

more efficient: overall cost is
lg p(ts + mtw ) = O(lg p)

this is also the maximal
per-process cost (in this
case, process 0)
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Collective Communication Algorithms

Broadcast: Tree and Pipelined

assuming root is process 0, and pceil= 2dlg pe, the tree broadcast can
be implemented as:

for (d = pceil /2; d >= 1; d/=2) {

2 if (rank % (2*d) == 0 && rank + d < p)

send(buf , m, rank + d);

4 if (rank % (2*d) == d)

recv(buf , m, rank - d);

6 }

the pipelined broadcast: 0 −→ 1 −→ 2 −→ 3

if (rank != 0)

2 recv(buf , m, rank -1);

if (rank != p-1)

4 send(buf , m, rank +1);

total cost is
(p − 1)(ts + mtw ) = O(p)

but, max. cost per process is
ts + mtw

cost of p consecutive broadcasts
is (2p − 1)(ts + mtw ). For tree?
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Collective Communication Algorithms

Scatter

recall that a scatter can be implemented as p − 1 sends from the
root process

total cost is (p − 1)(ts + mtw ), where m is the send count

however, applying the tree communication pattern, and sending
halved amounts of data at each stage

for (d = pceil /2; d >= 1; d/=2) {

2 if (rank % (2*d) == 0 && rank + d < p)

send(&buf[d*m], d*m, rank + d);

4 if (rank % (2*d) == d)

recv(buf , d*m, rank - d);

6 } // result of scatter is in msg [0..m-1]

above scheme is an example of recursive halving
noting p/2 + p/4 + . . .+ 1 = p− 1, total cost is lg p · ts + (p− 1)mtw
improvement for small m;

also maximum ‘fan-out‘ is reduced from p − 1 to lg p
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Collective Communication Algorithms

Binary Tree-Based Reduce and All-Reduce

(courtesy CPSC425, http://cs.umw.edu)

for (d = 1; d < pceil; d*=2) {

2 if (rank % (2*d) == d)

send(buf , m, rank - d);

4 if (rank % (2*d) == 0 && ...)

recvAdd(buf , m, rank + d); }

1 assert (p == pceil);

for (d = 1; d < pceil; d*=2) {

3 sd = (rank %(2*d) >= d)? -d: +d;

send(buf , m, rank+sd);

5 recvAdd(buf , m, rank+sd);}

Cost is lg p(ts + mtw ) in both cases. Issues?
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Collective Communication Algorithms

Gather

recall that a gather can be implemented as p − 1 receives to the root
process

applying reduce’s tree communication pattern, and sending doubled
amounts of data at each stage:

1 // assume the send buffer is in msg [0..m-1]

for (d = 1; d < pceil; d*=2) {

3 if (rank % (2*d) == d)

send(msg , d*m, rank - d);

5 if (rank % (2*d) == 0 && rank + d < p)

recv(&msg[d*m], d*m, rank + d);

7 }

above scheme is an example of recursive doubling

similarly total cost is lg p · ts + (p − 1)mtw

improvement also over max. ‘fan-in‘, from p − 1 to lg p
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Collective Communication Algorithms

All-Gather

Data x Data x Data x
0 1 n−1

Process 0 Process 1 Process n−1

Send buffer

Receive buffer

all−gather() all−gather() all−gather()

Can be (simplistically) implemented as:

1 for (i = 0; i < p; i++)

send(sbuf , m, /* process */ i);

3 for (i = 0; i < p; i++)

recv(&rbuf[i*m], m, /* process */ i);

Neglecting the cost of a self-send, the cost is (p − 1)(ts + mtw ). Further
issues?
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Collective Communication Algorithms

All-Gather: Recursive Doubling

all-reduce pattern with recursive doubling gives:

// assume the send data is in msg[rank*m..rank*m+m-1]

2 for (d = 1; d < p; d*=2) {

sd = (rank %(2*d) >= d)? -d: +d;

4 rd = (rank / d) * d;

send(&msg[rd*m], d*m, rank + sd);

6 recv(&msg[(rd+sd)*m], d*m, rank + sd);

}

the cost is lg p · ts + (p − 1)mtw (good for small m)

as with all-reduce, contention may be an issue on some networks

how to implement for non-power-of-2 p?
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All-Gather: Ring-based

a simpler algorithm can avoid contention, and works for all p

1 //send data in msg[sk*m..]

l = (rank + 1)%p;

3 r = (p + rank - 1)%p;

sk = rank;

5 for (k=0; k < p-1; k++) {

send(&msg[sk*m], m, r);

7 sk = (p + sk - 1) % p;

recv(&msg[sk*m], m, l);

9 }

(courtesy slideshare.net)

can be thought of as p pipelined broadcasts from each process, in
parallel
but cost is still (p − 1)(ts + mtw )
often these patterns works over a subset of all processes, e.g. a row or
column in a logical 2-D process grid,
so the O(p)ts term is not so much of a disadvantage
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Reduce-Scatter

can use an all-reduce pattern, with recursive halving

1 for (d = p/2; d >= 1; d/=2) {

sd = (rank %(2*d) >= d)? -d: +d;

3 rd = (rank / d) * d;

send(&msg[(rd+sd)*m], d*m, rank + sd);

5 recv(buf , d*m, rank + sd);

add(buf , &msg[rd*m], d*m);

7 }

// result is in msg[rd*m..rd*m+m-1]

we can similarly use ring-based methods

sk = (p + rank - 1) % p;

2 for (k=0; k < p-1; k++) {

send(&msg[sk*m], m, r);

4 sk = (p + sk - 1) % p;

recv(buf , m, l);

6 add(buf , &msg[sk*m], m);

}

8 // result is in msg[sk*m..sk*m+m-1]
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Hands-on Exercise: Collective Algorithms
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MPI: Early History

MPI-1 (May 94)

fixed process model

point-point communications

collective operations

communicators for safe library writing

utility routines

MPI-2 (July 97)

dynamic process management

one-sided communications

cooperative I/O

(other small things!) C++/Fortran 90 binding, extended collectives,
etc.

Much more complicated, and much slower vendor uptake. . .
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Dynamic Process Management

MPI-1 had a static or fixed number of processes

could not add or delete processes
(you could have a fixed pool of processes and only use some of them,
but cost of having idle processes may be large – implementation
dependent)

some applications favour dynamic spawning:

run-time assessment of environment
serial applications with parallel modules
scavenger applications

Dynamic spawning also supports coupled simulations (e.g. climate
models).

caution: task initiation is expensive and should be used with careful
thought
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MPI-2 Process Management

Features:

parents can spawn children

existing MPI applications can connect

formerly independent sub-applications can tear down communications
and become independent again

Task spawning:

MPI_Comm_spawn(command , argv , nprocs , info , root ,

2 parent_intracomm , intercomm , errcodes);

this is a collective operation over the parent processes’
communicator

info parameter: details on how to start the new processes (host,
architecture, work directory, path etc)

intercomm and errcodes are returned values
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Communicators

MPI processes are identified by (group, rank) pairs
communicators are either:

intra-group
inter-group: ranks refer to processes in the remote group

processes in the parent and children groups each have their own
MPI_COMM_WORLD

MPI_Send/Recv() etc have a destination and an inter/intra communicator
it is possible to merge processes or free parents from children (!)
MPI_Intercomm_merge() and MPI_Comm_free()

0

1
2

1

0

4
3

2

MPI_WORLD_COM (for children)

MPI_WORLD_COM (for parents)

INTERCOMMUNICATOR

INTRACOMMUNICATOR
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MPI Dynamic Process Hello World

parent code:

MPI_Comm childInterComm; int nChilds =4; char msgBuf [64];

2 MPI_Comm_spawn("helloChild", MPI_ARGV_NULL , nChilds , ...,

0, MPI_COMM_WORLD , &childInterComm , ...);

4 MPI_Comm_remote_size(childInterComm , &nChilds);

strncpy(msgBuf , argv[0], 64);

6 root = (rank == 0)? MPI_ROOT: MPI_PROC_NULL;

MPI_Bcast(msgBuf , 64, MPI_CHAR , root , childInterComm);

8 printf("Hello from proc %d of %d, parent of %d %s childs\n",

rank , nprocs , nChilds , CHILD_NAME);

child code (helloChild.c):

1 MPI_Comm parentInterComm; int nParents; char msgBuf [64];

MPI_Comm_get_parent (& parentInterComm);

3 MPI_Comm_remote_size(parentInterComm , &nParents);

MPI_Bcast(msgBuf , 64, MPI_CHAR , 0, parentInterComm);

5 printf("Hello from proc %d of %d, child of %d %s parents\n",

rank , nprocs , nParents , msgBuf);

note the specification of the root of the broadcast in each case
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One-Sided Communications

In traditional message passing:

one process sends, the other receives (cooperative data transfer)

there is an implicit synchronization – although it may be delayed by
asynchronous message passing

One-sided communication:

paradigm was strongly driven by Cray SHMEM library (T3D/T3E
systems), although the MPI-2 model is a bit unusual!

one process specifies all communication parameters

data transfer and synchronization are separate

typical operations are put, get, accumulate:

MPI_Put(origin_addr , origin_count , origin_datatype ,

2 target_rank , target_disp , target_count ,

target_datatype , win);

Computer Systems (ANU) Advanced Messaging 31 Oct 2017 53 / 62



Message Passing Extensions

MPI-2 Remote Memory Access (RMA)
processes assign a portion (or window) of their address space that
they explicitly expose to RMA operations

1 MPI_Win win;

MPI_Win_allocate(size , disp_unit , info , comm , baseptr , &win);

two types of targets:

active target RMA: requires all processors that created the window to
call MPI_Win_fence() before any RMA operation is guaranteed complete

communication is one-sided: no process is required to post a receive
communication is cooperative in that all processes must synchronize

passive target RMA: the only requirement is that the originating
process places MPI_Win_lock/unlock() before & after the data transfer

transfer is guaranteed to have completed on return from
MPI_Win_unlock()

this is known as (Cray SHMEM) one-sided communication

potential for one process to get and a second process to put to the
same location on a 3rd process – this will give arbitrary results

we can avoid this by using locks or mutexes

Computer Systems (ANU) Advanced Messaging 31 Oct 2017 54 / 62



Message Passing Extensions

MPI-2 File Operations

Positioning:

explicit offset

shared pointer / individual pointers

Synchronization:

blocking / non-blocking (asynchronous)

Coordination:

collective / non-collective

Filetypes:

a filetype is a datatype made up of elementary types (etypes), e.g.
MPI_INT

allows us to specify non-contiguous accesses

files can be tiled, such that process i writes to block
i , i + p, i + 2p, . . . block of the file (p is the number of processes)
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MPI-IO Usage

every process writes its own data to a separate file
this is what we have now, i.e. just using language-specific I/O

processes can append data to a common file, e.g. a log file
no tiling, non-collective operations, common shared file pointer

processes can cooperatively
write a large matrix to a file

create a filetype to tile the
file
use individual pointers
use collective operations to
allow data shuffling

a parallel file system can be
used, but appears appears like a
normal file system

it employs multiple I/O
servers for high sustained
throughput

We will concentrate on cooperative file operations with individual pointers.
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Simple MPI-IO

Each MPI processes reads or writes to a single block in the file.
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Simple MPI I/O

for each MPI processes to read/write a single block in the file, the
following 3 steps are required:

MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,

MPI_File *fh): a collective over comm, creating both an individual and
shared file pointer

the info parameter allows us to send extra hints about the file (e.g.
performance tuning, special case handling)

the subsequent read/write generally requires a positioning to occur:
MPI_File_seek(fh, offset, ...); MPI_File_read(fh, ...) (use individual
file pointer)
MPI_File_Read_at(fh, offset, ...); (directly read at desired offset)
MPI_File_seek_shared(fh, offset, ...); MPI_File_read_shared(fh, ...);

(use shared file pointer; note: the shared seek is a collective!)

The read/write calls specify a buffer, count and datatype (like normal
recv/send).

MPI_File_close(fh): also a collective
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MPI-IO Hello World

const int msize = 6;

2 char *helloMsg [] = {"Hello ", "World!");

char msg[msize];

4 int rank;

MPI_File fh; MPI_Offset offset;

6 MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

8 MPI_File_open(MPI_COMM_WORLD , "hello.txt",

MPI_MODE_CREATE|MPI_MODE_WRONLY , MPI_INFO_NULL , &fh);

10 offset = msize * rank;

MPI_File_seek(fh , offset , MPI_SEEK_SET);

12 memcpy(msg , helloMsg[rank % 2], msize);

MPI_File_write(fh , msg , msize , MPI_CHAR , MPI_ANY_STATUS);

14 MPI_File_close (&fh);

MPI_Finalize ();

$ mpirun -np 4 ./helloMPIIO

$ cat hello.txt

Hello World!Hello World!$
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MPI-2 and Beyond

MPI-2 added a lot of new functionality
uptake of new features was much much slower than for MPI-1
vendor-specific implementations were for long incomplete

MPI-3 (2012, 2015): improved one-sided communications,
non-blocking collectives
portable (and open-source!) implementations are widely used MPICH
(mid 90’s) and OpenMPI (2004)
issues in modern MPI implementations (ref: MPI-3 and Beyond, by
William Gropp)

must support the major ‘transports’, e.g. ShMem, TCP/IP, IB
when p becomes large (case study: UM profiling)

spawning overheads
must each process establish p connections, allocate p message buffers?

MPI+X, X=C/C++/Fortran, continues to be the dominant
programming model for supercomputing
future challenges: dealing with many threads, GPUs and other devices
fault tolerance: User-Level Fault Mitigation MPI pilot (case study)
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Summary

Topics covered today:

performance measures and models
speedup, overheads, Amdahl’s Law, efficiency & cost-optimality,
strong/weak scaling

collective communications in MPI:
basic ideas, API

collective communication algorithms
naive vs tree/recursive vs ring;
performance (end-to-end, per process, congestion)

message passing extensions:
dynamic process managements, intra/inter-communicators, MPI I/O

Tomorrow - parallelization strategies
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Hands-on Exercise: Dynamic Processes, MPI I/O
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