
Parallelization Strategies
ASD Distributed Memory HPC Workshop

Computer Systems Group

Research School of Computer Science
Australian National University

Canberra, Australia

November 01, 2017



Day 3 – Schedule

Computer Systems (ANU) Parallelization Strategies 01 Nov 2017 2 / 84



Embarrassingly Parallel Problems

Outline

1 Embarrassingly Parallel Problems

2 Parallelisation via Data Partitioning

3 Synchronous Computations

4 Parallel Matrix Algorithms

Computer Systems (ANU) Parallelization Strategies 01 Nov 2017 3 / 84



Embarrassingly Parallel Problems

Outline: Embarrassingly Parallel Problems

what they are

Mandelbrot Set computation

cost considerations
static parallelization
dynamic parallelizations and its analysis

Monte Carlo Methods

parallel random number generation
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Embarrassingly Parallel Problems

Embarrassingly Parallel Problems
computation can be divided into completely independent parts for
execution by separate processors (correspond to totally disconnected
computational graphs)

infrastructure: Blocks of Independent Computations (BOINC) project
SETI@home and Folding@Home are projects solving very large such
problems

part of an application may be embarrassingly parallel

distribution and collection of data are the key issues (can be
non-trivial and/or costly)

frequently uses the master/slave approach (p − 1 speedup)

Collect Results

Send data

Slaves
Master
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http://boinc.berkeley.edu/
https://setiathome.berkeley.edu/
https://folding.stanford.edu/


Embarrassingly Parallel Problems

Example#1: Computation of the Mandelbrot Set
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Embarrassingly Parallel Problems

The Mandelbrot Set

set of points in complex plane that are quasi-stable

computed by iterating the function

zk+1 = z2k + c

z and c are complex numbers (z = a + bi)
z initially zero
c gives the position of the point in the complex plane

iterations continue until |z | > 2 or some arbitrary iteration limit is
reached

|z | =
√
a2 + b2

enclosed by a circle centered at (0,0) of radius 2
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Embarrassingly Parallel Problems

Evaluating 1 Point

1 typedef struct complex{float real , imag;} complex;

const int MaxIter = 256;

3

int calc_pixel(complex c){

5 int count = 0;

complex z = {0.0, 0.0};

7 float temp , lengthsq;

do {

9 temp = z.real * z.real - z.imag * z.imag + c.real

z.imag = 2 * z.real * z.imag + c.imag;

11 z.real = temp;

lengthsq = z.real * z.real + z.imag * z.imag;

13 count ++;

} while (lengthsq < 4.0 && count < MaxIter);

15 return count;

}
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Embarrassingly Parallel Problems

Building the Full Image

Define:

min. and max. values for c (usually -2 to 2)

number of horizontal and vertical pixels

for (x = 0; x < width; x++)

2 for (y = 0; y < height; y++){

c.real = min.real + ((float) x * (max.real - min.real)/width);

4 c.imag = min.imag + ((float) y * (max.imag - min.imag)/height);

color = calc_pixel(c);

6 display(x, y, color);

}

Summary:

width × height totally independent tasks

each task can be of different length
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Embarrassingly Parallel Problems

Cost Considerations on NCI’s Raijin

10 flops per iteration

maximum 256 iterations per point

approximate time on one Raijin core:
10× 256/(8× 2.6× 109) ≈ 0.12usec

between two nodes the time to communicate single point to slave and
receive result ≈ 2× 2usec (latency limited)

conclusion: cannot parallelize over individual points

also must allow time for master to send to all slaves before it can
return to any given process
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Embarrassingly Parallel Problems

Parallelisation: Static
Process

Map

Width

Height

Process

Map

Row Distribution

Square Region Distribution
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Embarrassingly Parallel Problems

Static Implementation
Master:

for (slave = 1, row = 0; slave < nproc; slave ++) {

2 send(&row , slave);

row = row + height/nproc;

4 }

for (npixel = 0; npixel < (width * height); npixel ++) {

6 recv(&x, &y, &color , any_processor);

display(x, y, color);

8 }

Slave:

const int master = 0; // proc. id

2 recv(&firstrow , master);

lastrow = MIN(firstrow + height/nproc , height);

4 for (x = 0; x < width; x++)

for (y = firstrow; y < lastrow; y++) {

6 c.real = min.real + ((float) x * (max.real - min.real)/width);

c.imag = min.imag + ((float) y * (max.imag - min.imag)/height);

8 color = calc_pixel(c);

send(&x, &y, &color , master);

10 }
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Embarrassingly Parallel Problems

Dynamic Task Assignment

discussion point: why would we expect static assignment to be
sub-optimal for the Mandelbrot set calculation? Would any regular
static decomposition be significantly better (or worse)?

usa a pool of over-decomposed tasks that are dynamically assigned
to next requesting process:

(x1,y1)
(x4,y4)

(x3,y3) (x6,y6)

(x5,y5)(x2,y2)

(x7,y7)

Work Pool

Task
Result
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Embarrassingly Parallel Problems

Processor Farm: Master

count = 0;

2 row = 0;

for (slave = 1; slave < nproc; k++){

4 send(&row , slave , data_tag);

count ++;

6 row ++;

}

8 do {

recv(&slave , &r, &color , any_proc , result_tag);

10 count --;

if (row < height) {

12 send(&row , slave , data_tag);

row ++;

14 count ++;

} else

16 send(&row , slave , terminator_tag);

display_vector(r, color);

18 } while (count > 0);
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Embarrassingly Parallel Problems

Processor Farm: Slave

const int master = 0; //proc id.

2 recv(&y, master , any_tag , source_tag);

while (source_tag == data_tag) {

4 c.imag = min.imag + ((float) y * (max.imag - min.imag)/height);

for (x = 0; x < width; x++) {

6 c.real = min.real + ((float) x * (max.real - min.real)/width);

color[x] = calc_pixel(c);

8 }

send(&myid , &y, color , master , result_tag);

10 recv(&y, master , source_tag);

}

Computer Systems (ANU) Parallelization Strategies 01 Nov 2017 15 / 84



Embarrassingly Parallel Problems

Analysis

Let p,m, n, I denote nproc, height, width, MaxIter:

sequential time: (tf denotes floating point operation time)
tseq ≤ I ·mn · tf = O(mn)

parallel communication 1: (neglect th term, assume message length of
1 word)
tcom1 = 2(p − 1)(ts + tw )

parallel computation:
tcomp ≤ I ·mn

p−1 tf
parallel communication 2:
tcom2 = m

p−1(ts + tw )

overall:
tpar ≤ I ·mn

p−1 tf + (p − 1 + m
p−1)(ts + tw )

Discussion point: What assumptions have we been making here? Are
there any situations where we might still have poor performance, and how
could we mitigate this?
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Embarrassingly Parallel Problems

Example#2: Monte Carlo Methods

use random numbers to solve numerical/physical problems
evaluation of π by determining if random points in the unit square fall
inside a circle

area of circle

area of square
=
π(1)2

2× 2
=
π

4

2

2

πArea = 

Total Area = 4
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Embarrassingly Parallel Problems

Monte Carlo Integration

evaluation of integral (x1 ≤ xi ≤ x2)

area =

∫ x2

x1

f (x) dx = lim
N→∞

1

N

N∑
i=1

f (xi )(x2 − x1)

example

I =

∫ x2

x1

(x2 − 3x) dx

sum = 0;

2 for (i = 0; i < N; i++) {

xr = rand_v(x1, x2);

4 sum += xr * xr - 3 * xr;

}

6 area = sum * (x2 - x1) / N;

where rand_v(x1, x2) computes a pseudo-random number between x1

and x2
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Embarrassingly Parallel Problems

Parallelization

only problem is ensuring each process uses a different random number
and that there is no correlation
one solution is to have a unique process (maybe the master) issuing
random numbers to the slaves

Random number process

Master

Partial sum

Random number

Slaves

Request
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Embarrassingly Parallel Problems

Parallel Code: Integration

Master (process 0):

for (i = 0; i < N/n; i++) {

2 for (j = 0; j < n; j++)

xr[j] = rand_v(x1, x2);

4 recv(any_proc , req_tag , &p_src)

;

send(xr , n, p_src , comp_tag);

6 }

for (i=1; i < nproc; i++) {

8 recv(i, req_tag);

send(i, stop_tag);

10 }

sum = 0;

12 reduce_add (&sum , p_group);

Slave:

const int master = 0; //proc id.

2 sum = 0;

send(master , req_tag);

4 recv(xr , &n, master , tag);

while (tag == comp_tag) {

6 for (i = 0; i < n; i++)

sum += xr[i]*xr[i] - 3*xr[i];

8 send(0, req_tag);

recv(xr , n, master , &tag);

10 }

reduce_add (&sum , p_group);

Question: performance problems with this code?
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Embarrassingly Parallel Problems

Parallel Random Numbers

linear congruential generators xi+1 = (axi + c) mod m (a, c , and m
are constants)

using property xi+p = (A(a, p,m)xi + C (c, a, p,m)) mod m, we can
generate the first p random numbers sequentially to repeatedly
calculate the next p numbers in parallel

x(2) x(p) x(p+1) x(p+2) x(2p−1) x(2p)x(p−1)x(1)
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Embarrassingly Parallel Problems

Summary: Embarrassingly Parallel Problems

defining characteristic: tasks do not need to communicate

non-trivial however: providing input data to tasks, assembling results,
load balancing, scheduling, heterogeneous compute resources, costing

static task assignment (lower communication costs) vs.
dynamic task assignment + overdecomposition (better load
balance)

Monte Carlo or ensemble simulations are a big use of
computational power!

the field of grid computing arose to solve this issue
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Embarrassingly Parallel Problems

Hands-on Exercise: Embarrassingly || Problems
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Parallelisation via Data Partitioning

Outline

1 Embarrassingly Parallel Problems

2 Parallelisation via Data Partitioning

3 Synchronous Computations

4 Parallel Matrix Algorithms
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Parallelisation via Data Partitioning

Outline: Parallelisation via Data Partitioning

partitioning strategies

vector summation via partitioning, via divide-and-conquer

binary trees (divide-and-conquer)

bucket sort

numerical integration - adaptive techniques

N-body problems

Challenge from PS1: can you write a well-balanced parallel Mandelbrot set
program using static task assignment?
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Parallelisation via Data Partitioning

Partitioning Strategies

replicated data approach (no partitioning)

each process has entire copy of data but does subset of computation

partition program data to different processes

most common
strategies: domain decomposition, divide-and-conquer

partitioning of program functionality

much less common
functional decomposition

consider the addition of numbers

s =
n−1∑
i=0

xi
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Parallelisation via Data Partitioning

Example#1: Simple Summation of Vector

divide numbers into m equal parts

Partial Sums

Sum

x(0) ... x(n/m−1) x(n/m) ... x(2n/m−1) x((m−1)n/m) ... x(n−1)
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Parallelisation via Data Partitioning

Master/Slave Send/Recv Approach

Master:

1 s = n / m;

for (i = 0, x = 0; i < m; i++, x = x + s)

3 send(& numbers[x], s, i+1 /*slave id*/);

5 sum = 0;

for (i = 0; i < m; i++) {

7 recv(&part_sum , any_proc);

sum = sum + part_sum;

9 }

Slave:

1 recv(numbers , s, master);

part_sum = 0;

3 for (i = 0; i < s; i++)

part_sum = part_sum + numbers[i];

5 send(&part_sum , master);
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Parallelisation via Data Partitioning

Using MPI Scatter and MPI Reduce

See man MPI Scatter and man MPI Reduce

1 s = n/m;

MPI_Scatter(numbers , s /* sendcount */, MPI_FLOAT /*send data*/,

3 numbers , s /* recvcount */, MPI_FLOAT /*recv data*/,

0 /*root*/, MPI_COMM_WORLD);

5

for (i = 0; i < s; i++)

7 part_sum = part_sum + numbers[i];

9 MPI_Reduce (&part_sum , &sum , 1 /* count*/, MPI_FLOAT ,

MPI_SUM , 0 /*root*/, MPI_COMM_WORLD);

NOT master/slave

the root sends data to all processes (including itself)

note related MPI calls:

MPI_Scatterv(): scatters variable lengths
MPI_Allreduce(): returns result to all processors
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Parallelisation via Data Partitioning

Analysis

Sequential:

n − 1 additions thus O(n)

Parallel (p = m):

communication #1: tscatter = p(ts + n
p tw )

computation #1: tpartialsum = (np )tf

communication #2: treduce = p(ts + tw )

computation #2: tfinalsum = (p − 1)tf

overall: tp = 2pts + (n + p)tw + (n/p + p − 1)tf = O(n + p)

worse than sequential code!!

Discussion point: in this example, we are assuming the associative
property of addition (+)? Is this strictly true for floating point numbers?
What impact does this have for such parallel algorithms?
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Parallelisation via Data Partitioning

Domain Decomposition via Divide-and-Conquer

problems that can be recursively divided into smaller problems of the
same type

recursive implementation of the summation problem:

int add(int *s) {

2 if (numbers(s) == 1)

return (s[0]);

4 else {

divide(s, s1, s2);

6 part_sum1 = add(s1);

part_sum2 = add(s2);

8 return (part_sum1 + part_sum2);

}

10 }
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Parallelisation via Data Partitioning

Binary Tree

divide-and-conquer with binary partitioning

note number of working processors decreases going up the tree

1

2

4

8

Number of

Processors

P0

P0

P0

P0

P1

P2 P1P3

P1P3P2P6 P7 P5P4

4 + 0 = 4
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Parallelisation via Data Partitioning

Simple Binary Tree Code

/* Binary Tree broadcast

2 a) 0->1

b) 0->2, 1->3

4 c) 0->4, 1->5, 2->6, 3->7

d) 0->8, 1->9, 2->10, 3->11, 4->12, 5->13, 6->14, 7->15

6 */

lo = 1;

8 while (lo < nproc) {

if (me < lo) {

10 id = me + lo;

if (id < nproc)

12 send(buf , lenbuf , id);

}

14 else if (me < 2*lo) {

id = lo;

16 recv(buf , lenbuf , id);

}

18 lo *= 2;

}

This is used to scatter the vector; the reverse algorithm combines the
partial sums.
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Parallelisation via Data Partitioning

Analysis

assume n is a power of 2 and ignoring ts

communication#1: divide
tdivide = n

2 tw + n
4 tw + n

8 tw + · · · np tw = n(p−1)
p tw

communication#2: combine
tcombine = lg p · tw
computation:
tcomp = (np + lg p)tf

total:
tp = (n(p−1)p + lg p)tw + (np + lg p)tf

slightly better than before - as p → n, cost → O(n)
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Parallelisation via Data Partitioning

Higher Order Trees

possible to divide data into higher order trees, e.g. a quad tree

First Division

Second Division

Initial Area
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Parallelisation via Data Partitioning

Example#2: Bucket Sort

Divide number range (a) into m equal regions(
0→ a

m
− 1
)
,
( a

m
→ 2

a

m
− 1
)
,
(

2
a

m
→ 3

a

m
− 1
)
, · · ·

assign one bucket to each region

stage 1: numbers are placed into appropriate buckets

stage 2: each bucket is sorted using a traditional sorting algorithm

works best if numbers are evenly distributed over the range a

sequential time

ts = n + m((n/m) lg(n/m)) = n + n lg(n/m) = O(n lg(n/m))
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Parallelisation via Data Partitioning

Sequential Bucket Sort

Unsorted Numbers

Sorted Numbers

Buckets
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Parallelisation via Data Partitioning

Parallel Bucket Sort#1

assign one bucket to each process:

Sorted Numbers

Buckets

Unsorted Numbers

Processes
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Parallelisation via Data Partitioning

Parallel Bucket Sort#2

Sorted Numbers

Unsorted Numbers

Processes

Small Buckets

Big Buckets

assign p small buckets to each process
note possible use of MPI_Alltoall()

MPI_Alltoall(void* sendbuf , int sendct , MPI_Datatype sendtype ,

2 void* recvbuf , int recvct , MPI_Datatype recvtype ,

MPI_Comm comm)
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Parallelisation via Data Partitioning

Analysis

initial partitioning and distribution
tcomm1 = pts + twn

sort into small buckets
tcomp2 = n/p

send to large buckets: (overlapping communications)
tcomm3 = (p − 1)(ts + (n/p2)tw )

sort of large buckets
tcomp4 = (n/p) lg(n/p)

total
tp = pts + ntw + n/p + (p − 1)(ts + (n/p2)tw ) + (n/p) lg(n/p)

at best O(n)

what would be the worse case scenario?
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Parallelisation via Data Partitioning

Example#3: Integration

consider the evaluation of an integral using the trapezoidal rule
I =

∫ b
a f (x)dx

f(x)

xba p q

δ
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Parallelisation via Data Partitioning

Static Distribution: SPMD Model

1 if (process_id == master) {

printf("Enter number of regions\n");

3 scanf("%d", &n);

}

5 broadcast (&n, master , p_group)

region = (b-a)/p;

7 start = a + region*process_id;

end = start + region;

9 d = (b-a)/n;

area = 0.0;

11 for (x = start; x < end; x = x + d)

area = area + 0.5 * (f(x) + f(x+d)) * d;

13 reduce_add (&area , master , p_group);

Computer Systems (ANU) Parallelization Strategies 01 Nov 2017 42 / 84



Parallelisation via Data Partitioning

Adaptive Quadrature

not all areas require the same number of points
when to terminate division into smaller areas is an issue
the parallel code will have uneven workload

f(x)

xba
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Parallelisation via Data Partitioning

Example#4: N-Body Problems

summing long-range pairwise interactions, e.g. gravitation
F = Gmamb

r2

where G is the gravitational constant, ma and mb are the mass of two
bodies, and r is the distance between them

in Cartesian space:
Fx = Gmamb

r2

(
xb−xa

r

)
Fy = Gmamb

r2

( yb−ya
r

)
Fz = Gmamb

r2

(
zb−za

r

)
what is the total force on the sun due to all other stars in the milky
way?

given the force on each star we can calculate their motions

molecular dynamics is very similar but the long forces are electrostatic
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Parallelisation via Data Partitioning

Simple Sequential Force Code

1 for (i = 0; i < n; i++)

for (j = 0; j < n; j++) {

3 if (i != j) {

rij2 = (x[i]-x[j])*(x[i]-x[j])

5 + (y[i]-y[j])*(y[i]-y[j])

+ (z[i]-z[j])*(z[i]-z[j]);

7 Fx[i] = Fx[i] + G*m[i]*m[j]/rij2 * (x[i]-x[j]) / sqrt(rij2);

Fy[i] = Fy[i] + G*m[i]*m[j]/rij2 * (y[i]-y[j]) / sqrt(rij2);

9 Fz[i] = Fz[i] + G*m[i]*m[j]/rij2 * (z[i]-z[j]) / sqrt(rij2);

}

11 }

aside: how could you improve this sequential code?

O(n2) - this will get very expensive for large n

is there a better way?
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Parallelisation via Data Partitioning

Clustering

idea: the interaction with several bodies that are clustered together
but are located at large r for another body can be replaced by the
interaction with the center of mass of the cluster

r

Center of Mass

Distant Cluster of Stars
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Parallelisation via Data Partitioning

Barnes-Hut Algorithm

start with whole space in one cube

divide the cube into 8 sub-cubes
delete sub-cubes if they have no particles in them
sub-cubes with more than 1 particle are divided into 8 again
continue until each cube has only one particle (or none)

this process creates an oct-tree

total mass and centre of mass of children sub-cubes is stored at each
node

force is evaluated by starting at the root and traversing the tree, BUT
stopping at a node if the clustering algorithm can be used

scaling is O(n log n)

load balancing likely to be an issue for parallel code
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Parallelisation via Data Partitioning

Barnes-Hut Algorithm: 2D Illustration

How to (evenly?) distribute such a structure? How often to re-distribute?
(very hard problem!)
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Parallelisation via Data Partitioning

Hands-on Exercise: Bucket Sort
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Synchronous Computations

Outline

1 Embarrassingly Parallel Problems

2 Parallelisation via Data Partitioning

3 Synchronous Computations

4 Parallel Matrix Algorithms
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Synchronous Computations

Overview: Synchronous Computations

degrees of synchronization

synchronous example 1: Jacobi Iterations

serial and parallel code, performance analysis

synchronous example 2: Heat Distribution

serial and parallel code
comparison of block and strip partitioning methods
safety
ghost points

Ref: Chapter 6: Wilkinson and Allen
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Synchronous Computations

Degrees of Synchronization

from fully to loosely synchronous

the more synchronous your computation, the more potential overhead

SIMD: synchronized at the instruction level

provides ease of programming (one program)
well suited for data decomposition
applicable to many numerical problems
the forall statement was introduced to specify data parallel
operations

forall (i = 0; i < n; i++) {

2 data parallel work

}
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Synchronous Computations

Synchronous Example: Jacobi Iterations

the Jacobi iteration solves a system of linear equations iteratively

an−1,0x0 + an−1,1x1 + an−1,2x2 + · · · an−1,n−1xn−1 = bn−1

...

a2,0x0 + a2,1x1 + a2,2x2 + · · · a2,n−1xn−1 = b2
a1,0x0 + a1,1x1 + a1,2x2 + · · · a1,n−1xn−1 = b1
a0,0x0 + a0,1x1 + a0,2x2 + · · · a0,n−1xn−1 = b0

where there are n equations and n unknowns (x0, x1, x2, · · · xn−1)
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Synchronous Computations

Jacobi Iterations

consider equation i as:
ai ,0x0 + ai ,1x1 + ai ,2x2 + · · · ai ,n−1xn−1 = bi

which we can re-cast as: xi = (1/ai ,i )[bi − (ai ,0x0 + ai ,1x1 + ai ,2x2 +
· · · ai ,i−1xi−1 + ai ,i+1xi+1 + · · · ai ,n−1xn−1)]
i.e.

xi = 1
ai,i

[
bi −

∑
j 6=i ai ,jxj

]
strategy: guess x , then iterate and hope it converges!

converges if the matrix is diagonally dominant:
∑

j 6=i |ai,j | < |ai,i |
terminate when convergence is achieved:

|x t − x t−1| < error tolerance
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Synchronous Computations

Sequential Jacobi Code

ignoring convergence testing:

1 for (i = 0; i < n; i++)

x[i] = b[i];

3 for (iter = 0; iter < max_iter; iter ++) {

for (i = 0; i < n; i++) {

5 sum = -a[i][i]*x[i];

for (j = 0; j < n; j++){

7 sum = sum + a[i][j]*x[j]

}

9 new_x[i] = (b[i] - sum) / a[i][i];

}

11 for (i = 0; i < n; i++)

x[i] = new_x[i];

13 }
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Synchronous Computations

Parallel Jacobi Code

ignoring convergence testing and assuming parallelisation over n
processes:

1 x[i] = b[i];

for (iter = 0; iter < max_iter; iter ++) {

3 sum = -a[i][i] * x[i];

for (j = 0; j < n; j++){

5 sum = sum + a[i][j]*x[j]

}

7 new_x[i] = (b[i] - sum) / a[i][i];

broadcast_gather (&new_x[i], new_x);

9 global_barrier ();

for (i = 0; i < n; i++)

11 x[i] = new_x[i];

}

broadcast_gather() sends the local new_x[i] to all processes and collects
their new values
Question: do we really need the barrier as well as this?
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Synchronous Computations

Partitioning

normally the number of processes is much less than the number of
data items

block partitioning: allocate groups of consecutive unknowns to
processes
cyclic partitioning: allocate in a round-robin fashion

analysis: τ iterations, n/p unknowns per process

computation – decreases with p

tcomp = τ(2n + 4)(n/p)tf

communication – increases with p

tcomm = p(ts + (n/p)tw )τ = (pts + ntw )τ

total - has an overall minimum

ttot = ((2n + 4)(n/p)tf + pts + ntw )τ

question: can we do an all-gather faster than pts + ntw?
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Synchronous Computations

Parallel Jacobi Iteration Time

Parameters: ts = 105tf , tw = 50tf , n = 1000

Number of processors, p

4 8 12 16 20

Computation

Overall

Communication

24 28 32

Execution

time
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Synchronous Computations

Locally Synchronous Example: Heat Distribution Problem

Consider a metal sheet with a fixed temperature along the sides but
unknown temperatures in the middle – find the temperature in the middle.

finite difference approximation to the Laplace equation:

∂2T (x , y)

∂x2
+
∂2T (x , y)

∂y2
= 0

T (x + δx , y)− 2T (x , y) + T (x − δx , y)

δx2
+
T (x , y + δy)− 2T (x , y) + T (x , y − δy)

δy2
= 0

assuming an even grid (i.e. δx = δy) of n× n points (denoted as hi ,j),
the temperature at any point is an average of surrounding points:

hi ,j =
hi−1,j + hi+1,j + hi ,j−1 + hi ,j+1

4

problem is very similar to the Game of Life, i.e. what happens in a cell
depends upon its neighbours
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Synchronous Computations

Array Ordering

1
x

2
x

k−1
x

k
x

k+1
x

k+2
x

i−k
x

i−1
x

i+1
x

i+k
x

i
x

2k−1
x

2k
x

k
x 2

we will solve iteratively: xi =
xi−1+xi+1+xi−k+xi+k

4
but this problem may also be written as a system of linear equations:

xi−k + xi−1 − 4xi + xi+1 + xi+k = 0
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Synchronous Computations

Heat Equation: Sequential Code

assume a fixed number of iterations and a square mesh

beware of what happens at the edges!

for (iter = 0; iter < max_iter; iter ++) {

2 for (i = 1; i < n; i++)

for (j = 1; j < n; j++)

4 g[i][j] = 0.25*(h[i-1][j] + h[i+1][j] +

h[i][j-1] + h[i][j+1]);

6 for (i = 1; i < n; i++)

for (j = 1; j < n; j++)

8 h[i][j] = g[i][j];

}
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Synchronous Computations

Heat Equation: Parallel Code

one point per process

assuming locally-blocking sends:

1 for (iter = 0; iter < max_iter; iter ++) {

g = 0.25*(w + x + y + z);

3 send(&g, P(i-1,j));

send(&g, P(i+1,j));

5 send(&g, P(i,j-1));

send(&g, P(i,j+1));

7 recv(&w, P(i-1,j));

recv(&x, P(i+1,j));

9 recv(&y, P(i,j-1));

recv(&z, P(i,j+1));

11 }

sends and receives provide a local barrier

each process synchronizes with 4 others surrounding processes
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Synchronous Computations

Heat Equation: Partitioning

normally more than one point per process

option of either block or strip partitioning

P
0

P
1

P
0

P
1

p−1P

p−1P

Block Partitioning Strip Partitioning
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Synchronous Computations

Block/Strip Communication Comparison

block partitioning: four edges exchanged (n2 data points, p
processes)

tcomm = 8(ts +
n
√
p
tw )

strip partitioning: two edges exchanged

tcomm = 4(ts + ntw )

n
p

n

Block Communications Strip Communications
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Synchronous Computations

Block/Strip Optimum

block communication is larger than strip if:

8
(
ts + n√

p tw
)
> 4(tw + ntw )

i.e. if ts > n
(

1− 2√
p

)
tw

Processes, p

t
s

Strip partition best

Block partion best
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Synchronous Computations

Safety and Deadlock

with all processes sending and then receiving data, the code is unsafe:
it relies on local buffering in the send() function

potential for deadlock (as in Prac 1, Ex 3)!

alternative #1: re-order sends and receives
e.g. for strip partitioning:

if ((myid % 2) == 0){

2 send(&g[1][1] , n, P(i-1));

recv(&h[1][0] , n, P(i-1));

4 send(&g[1][n], n, P(i+1));

recv(&h[1][n+1], n, P(i+1));

6 } else {

recv(&h[1][0] , n, p(i-1));

8 send(&g[1][1] , n, p(i-1));

recv(&h[1][n+1], n, p(i+1));

10 send(&g[1][n], n, p(i+1));

}
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Synchronous Computations

Alt# 2: Asynchronous Comm. using Ghostpoints

assign extra receive buffers for edges where data is exchanged
typically these are implemented as extra rows and columns in each
process’ local array (known as a halo)

can use asynchronous calls (e.g. MPI_Isend())

Process i

Process i+1

Ghost

points Copy data
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Synchronous Computations

Hands-on Exercise: Synchronous Computations
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Parallel Matrix Algorithms

Outline

1 Embarrassingly Parallel Problems

2 Parallelisation via Data Partitioning

3 Synchronous Computations

4 Parallel Matrix Algorithms
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Parallel Matrix Algorithms

Matrix Multiplication

i

j

k

k

A

B

C

matrix multiplication is the
dominant computation in linear
algebra and neural net training

tensor operations are broken
down to matrix operations on
TPUs and GPUs!

C += AB, where A,B,C are
M ×K ,K ×N,M ×N matrices,
respectively

ci ,j += ΣK−1
k=0 ai ,kbk,j , for

0 ≤ i < M, 0 ≤ j < N

we will primarily consider the
case M = N,K < N
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Parallel Matrix Algorithms

Matrix Process Topologies and Distributions

B

CA

(0,0)

(1,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1) (3,2)

(2,2)

(3,3)

(2,3)

(1,3)

(0,3)

(1,2)

(2,0)

(0,2)

use a logical two-dimensional
p = py × px process grid

e.g. a process with ID rank r
has a 2D rank (ry , rx), where
r = rypx + rx ,
0 ≤ rx < px , 0 ≤ ry < py
for performance,

py
px
≈ M

N is

generally optimal (best local
multiply speed, lowest
communication volume)

here, a block distribution over
the whole 4× 4 process grid is
used for C

notice that A (B) must be aligned to be on the same process rows
(columns) as C
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Parallel Matrix Algorithms

Rank-K Matrix Multiply: Simple Case

B

CA

(0,0)

(1,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1) (3,2)

(2,2)

(3,3)

(2,3)

(1,3)

(0,3)

(1,2)

(2,0)

(0,2)

consider the simplest case where K is
small enough and A(B) are distributed
block-wise over a single process column
(row)

assume local matrix sizes are
m = M

py
, n = N

px

denoting A, B, C as local portions of the
matrices, the parallel multiply can be
done by:

1 row-broadcast from col rx = 0 of A

(size m × K result in As)
2 column-broadcast for row ry = 0 of B

(size K × n, result in Bs)
3 perform local matrix multiply of As, Bs

and c
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Parallel Matrix Algorithms

Rank-K Matrix Multiply: General Case

All processes may have some columns of the distributed matrix A

A As As As
e.g. matrix A with K = 8,
distributed across a 3× 3
process grid

each process column must
broadcast its portion, storing
result in As (a ‘spread’ of the
K -dim. of A)

Algorithm now becomes:

1 row-wise all-gather of A (result in As, size m × K )

2 column-wise all-gather of B (result in Bs, size K × n)

3 perform local matrix multiply of As, Bs and C

If K 6 |px , py , we can ‘pad out’ matrices (or use MPI_Allgatherv()).
If K is large, we can reduce the size of As and Bs, by breaking this down
into stages.
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Parallel Matrix Algorithms

2D Process Topology Support in MPI

This involves creating a periodic 2D cartesian topology, followed by row
and column communicators:

int np, rank , px , py;

2 MPI_Comm comm2D , commRow , commCol; int dims[2], rank2D , r2D [2];

int periods [] = {1,1}, rowSpec [] = {1,0}, colSpec [] = {0,1};

4 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Comm_rank(MPI_COMM_WORLD , &np);

6 px = ...; py = np / px; assert (px * py == np);

dims [0] = px, dims [1] = py;

8 MPI_Cart_create(MPI_COMM_WORLD , 2, dims , periods , 0, &comm2D);

MPI_Comm_rank(comm2D , &rank2D); // likely that rank2d ==rank

10 MPI_Cart_coords(comm2D , rank2D , 2, r2D);

// create this process ’ 1D row / column communicators

12 MPI_Cart_sub(comm2D , rowSpec , &commRow); //of size px

MPI_Cart_sub(comm2D , colSpec , &commCol); //of size py

14 MPI_Comm_rank(commRow , &rx); MPI_Comm_rank(commCol , &ry);

assert (rx == r2D[0] && ry == r2D [1]);
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Parallel Matrix Algorithms

MPI Rank-K Update Algorithm
an m× n local matrix C can be represented as the pair (C, ldC), where
double *C points to the 0th element, the leading dimension
int ldC ≥ m and ci ,j is stored C[i + j*ldC]

defining a datatype for A will avoid an explicit pack operation:

MPI_Datatype aCol;

2 MPI_Type_vector (1, m, ldA , MPI_DOUBLE , &aCol);

MPI_Type_commit (&aCol);

in order to use Bs directly for a local matrix multiply (dgemm()) we must
transpose and pack B:

double Bt[n*kB], As[m*K], Bs[n*K]; int i, j;

2 for (i=0; i < kB; i++)

for (j=0; j < n; j++)

4 Bt[j + i*n] = B[i + j*ldB];

MPI_Allgather(A, kA , aCol , As , m*kA, MPI_DOUBLE , commRow);

6 MPI_Allgather(Bt, n*kB, MPI_DOUBLE , Bs, n*kB, MPI_DOUBLE ,

commCol);

dgemm_("NoTrans", "Trans", m, n, K, As , m, Bs , n, C, ldC);

(non-unit stride on the K -dim. is generally non-optimal for the multiply)
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Parallel Matrix Algorithms

Matrix Multiplication: ABT Case

A

B

T

C

Σ Σ Σ
Cs Cs Cs C

consider C += ABT , where N < K = M

this variant of the algorithm is:
1 column-wise all-gather of B (result in

Bs, size N × kB)
2 create a workspace Cs of size m × N
3 perform local matrix multiply of A, Bs

and Cs

4 row-wise reduce-scatter of Cs (add
result to C, size m × nC )

there is an analogous variant for C += ATB, efficient for M < K = N

general matrix multiply algorithm: choose variant involving least data
movement, performing a global transposition if needed
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Parallel Matrix Algorithms

Parallel Blocked-Partitioned Matrix Algorithms

blocked LU factorization (LINPACK) rated in the Top 10 Algorithms
of the 20th Century (CS&E, Jan 2000)

symmetric eigenvalue
algorithm arguably even
more important

idea: express vector
operations of original
algorithm into blocks

majority of operations are
now matrix-matrix
transforms algorithm from
data-access to
computation bound

normal block distribution
inadequate for || algorithms!

j

j
j

j

L

U

l L

N

N U

L

T

ii
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iP

j i j+w

i

j

j+w

A
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Parallel Matrix Algorithms

Matrix Distributions: Block-Cyclic
is ‘standard’ for || LA (load balance on triangular & sub- matrices)
divide the global matrix A into by × bx blocks on a P × Q array;
if block (0, 0) is on process (ry , rx), block (i , j) is on process
((i + ry )%py , (j + rx)%px)
e.g. ry = rx = 0, by = 3, bx = 2 on a 2× 3 array, a 10× 10 matrix A:

a00 a01 a06 a07 a02 a03 a08 a09 a04 a05
a10 a11 a16 a17 a12 a13 a18 a19 a14 a15
a20 a21 a26 a27 a22 a23 a28 a29 a24 a25
a60 a61 a66 a67 a62 a63 a68 a69 a64 a65
a70 a71 a76 a77 a72 a73 a78 a79 a74 a75
a80 a81 a86 a87 a82 a83 a88 a89 a84 a85
a30 a31 a36 a37 a32 a33 a38 a39 a34 a35
a40 a41 a46 a47 a42 a43 a48 a49 a44 a45
a50 a51 a56 a57 a52 a53 a58 a59 a54 a55
a90 a91 a96 a97 a92 a93 a98 a99 a94 a95
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Parallel Matrix Algorithms

Matrix Multiply on the Block-Cyclic Distribution

A As AsAs

e.g. matrix A with K = 8,
distributed across a 3× 3
process grid

each process column must
broadcast its portion, storing
result in As (a ‘spread’ of the
K -dim. of A)

The ‘spread’ of the K -dim. of A should respect the global order of indices

MPI_Allgather() will not give this order

unless px = py and bx = by , must re-order columns in As, Bs before
calling dgemm()
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Parallel Matrix Algorithms

Blocked LU Factorization Algorithm

right-looking variant using partial pivoting on an N × N matrix A

j
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i

for (j=0; j < N; j+=w)

for (i=j; i < j+w; i++)

find P[i ] s.t. |AP[i ], i | ≥ |Ai :N−1, i |
Ai , j :j ′−1 ↔ AP[i ], j :j ′−1 (j ′ = j+w)
l i ← l i/Ai ,i

Li ← Li − l iui

for (i = j; i < j+w; i++)

Ai ,: ↔ AP[i ],: (outside Lj)
U j ← (T j)−1U j

Aj ← Aj − LjU j

l i = Ai+1:N−1, i ; ui = Ai , i+1:j ′−1; Li = Ai+1:N−1, i+1:j ′−1

(T j) = Aj :j ′−1, j :j ′−1 (lower triangular matrix, with unit diagonal)

Lj = Aj ′:N−1, j :j ′−1; U j = Aj :j ′−1, j ′:N−1; Aj = Aj ′:N−1, j ′:N−1
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Parallel Matrix Algorithms

Blocked LU Factorization: Communication
let r ix (r iy ) denote the process row (column) rank holding Ai ,i

assume w = bx = by (one process row (column) holds U j (Lj) panel)

for (j=0; j < N; j+=w)

for (i=j; i < j+w; i++) (note r ix = r jx , r iy = r jy )
find P[i ] s.t. |AP[i ], i | ≥ |Ai :N−1, i | (all-reduce on col. r ix)

Ai , j :j ′−1 ↔ AP[i ], j :j ′−1 (swap on processes (r iy , r
i
x) and (r

P[i ]
y , r ix))

l i ← l i/Ai ,i (broadcast Ai ,i on col. r ix from row r iy )
Li ← Li − l iui (broadcast l i on col. r ix from row r iy )

for (i = j; i < j+w; i++)

Ai ,: ↔ AP[i ],: (swap on processes (r iy , r
i
x) and (r

P[i ]
y , r ix))

U j ← (T j)−1U j (broadcast T j on col. r jx from row r jy )

Aj ← Aj − LjU j (row (col.) broadcast Lj (U j) from col. r jx (row r jy ))

exercise: implement this using MPI and BLAS!
need to calculate local lengths for vector of length say N − j from say
process row r jy
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Parallel Matrix Algorithms

Parallel Factorization Analysis and Methods
performance is determined by load balance and communication
overhead issues
for an N × N matrix on a px × px process grid, || execution time is:
t(N) = c1Nts + c2N

2/px tw + c3N
3/p2x tf

As c1 = O(lg2 px) > c2 > c3 and typically ts
ff
≈ 103,

the ts term can be significant for small-moderate N/px .
Note: ts mainly due to software: several layers of function calls, error
checking, message header formation, buffer allocation & search
storage blocking: (ω = bx = by )

simplest to implement, minimizes number of messages
suffers from O(bx + by ) load imbalance on panel formation:
i.e. one processor column (row) holds Li (U i ); also in Ai ← Ai − LiU i

algorithmic blocking: can use dgemm-optimal ω, bx = by ≈ 1
greatly reduces these imbalances, ||izes row swaps
introduces 4N extra messages; local panel width is small (≈ ω/px)

lookahead (High Performance Linpack)
eliminates load imbalance in forming Li by computing it in advance
hard to implement; only applicable to some computations
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Parallel Matrix Algorithms

Summary

Topics covered today involve the message passing paradigm:

issues in parallelizing ‘embarrassingly parallel’ problems

parallelizing by domain decomposition

synchronous computations (mainly using domain decomposition)

case study: parallel matrix multiply and factorization

Tomorrow - the Partitioned Global Address Space paradigm
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Parallel Matrix Algorithms

Hands-on Exercise: Matrix Multiply
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