Parallelization Strategies ASD Distributed Memory HPC Workshop

Computer Systems Group

Research School of Computer Science Australian National University Canberra, Australia

November 01, 2017

ANU College of Engineering & Computer Science

æ

<ロト (四) (三) (三) (三)

Day 3 – Schedule

Distributed Memory HPC

Search Distributed Memory HPC Home » 3. Parallelization Strategies

Day 3: Parallelization Strategies

DISTRIBUTED MEMORY HPC
1. Messaging and Networks
2. Advanced Messaging
3. Parallelization Strategies
4. PGAS Paradigm
5. Distributed HPC Systems

Time	Lecture Topics	Hands-On Exercise	Instructor
9:00	Embarrassingly Parallel Problems	Load Balancing Embarrassingly Parallel Problems	Peter Strazdins
10:30	COFFEE BREAK		
11:00	Parallelisation via Data Partitioning	Bucket Sort	
12:30	LUNCH		
13:30	Synchronous Computations	Synchronous Computations	
15:00	AFTERNOON TEA		
15:30	Parallel Matrix Algorithms	Matrix Multiply	

Parallelization Strategies lecture slides (pdf)

<ロ> (日) (日) (日) (日) (日)

Outline

1 Embarrassingly Parallel Problems

- 2 Parallelisation via Data Partitioning
- 3 Synchronous Computations
- 4 Parallel Matrix Algorithms

< □ > < ---->

-∢ ∃ ▶

Outline: Embarrassingly Parallel Problems

- what they are
- Mandelbrot Set computation
 - cost considerations
 - static parallelization
 - dynamic parallelizations and its analysis
- Monte Carlo Methods
- parallel random number generation

Embarrassingly Parallel Problems

- computation can be divided into completely independent parts for execution by separate processors (correspond to totally disconnected computational graphs)
 - infrastructure: Blocks of Independent Computations (BOINC) project
 - SETI@home and Folding@Home are projects solving very large such problems
- part of an application may be embarrassingly parallel
- distribution and collection of data are the key issues (can be non-trivial and/or costly)
- frequently uses the master/slave approach (p-1 speedup)

Example#1: Computation of the Mandelbrot Set

Australian National University

The Mandelbrot Set

- set of points in complex plane that are quasi-stable
- computed by iterating the function

$$z_{k+1} = z_k^2 + c$$

- z and c are complex numbers (z = a + bi)
- z initially zero
- c gives the position of the point in the complex plane
- iterations continue until |z| > 2 or some arbitrary iteration limit is reached

$$|z = \sqrt{a^2 + b^2}$$

• enclosed by a circle centered at (0,0) of radius 2

Evaluating 1 Point


```
1 typedef struct complex{float real, imag;} complex;
  const int MaxIter = 256:
3
  int calc_pixel(complex c){
    int count = 0:
5
    complex z = \{0.0, 0.0\};
    float temp, lengthsq;
7
    do {
9
      temp = z.real * z.real - z.imag * z.imag + c.real
      z.imag = 2 * z.real * z.imag + c.imag;
11
      z.real = temp:
      lengthsq = z.real * z.real + z.imag * z.imag;
13
      count++:
    } while (lengthsq < 4.0 && count < MaxIter);</pre>
    return count;
 }
```

Building the Full Image

Define:

- min. and max. values for c (usually -2 to 2)
- number of horizontal and vertical pixels

```
for (x = 0; x < width; x++)
for (y = 0; y < height; y++){
    c.real = min.real + ((float) x * (max.real - min.real)/width);
    c.imag = min.imag + ((float) y * (max.imag - min.imag)/height);
    color = calc_pixel(c);
    display(x, y, color);
}</pre>
```

Summary:

- \bullet width \times height totally independent tasks
- each task can be of different length

- **(())) (())) ())**

Cost Considerations on NCI's Raijin

- 10 flops per iteration
- maximum 256 iterations per point
- approximate time on one Raijin core: $10 \times 256/(8 \times 2.6 \times 10^9) \approx 0.12$ usec
- between two nodes the time to communicate single point to slave and receive result $\approx 2 \times 2 \mathrm{usec}$ (latency limited)
- conclusion: cannot parallelize over individual points
- also must allow time for master to send to all slaves before it can return to any given process

Parallelisation: Static

Computer Systems (ANU)

Parallelization Strategies

■ ★ ■ ★ ■ ★ ■ ♥ Q C 01 Nov 2017 11 / 84

Static Implementation Master:


```
for (slave = 1, row = 0; slave < nproc; slave++) {
   send(&row, slave);
   row = row + height/nproc;
   }
   for (npixel = 0; npixel < (width * height); npixel++) {
    recv(&x, &y, &color, any_processor);
    display(x, y, color);
   }
</pre>
```

Slave:

```
const int master = 0; // proc. id
recv(&firstrow, master);
lastrow = MIN(firstrow + height/nproc, height);
for (x = 0; x < width; x++)
for (y = firstrow; y < lastrow; y++) {
c.real = min.real + ((float) x * (max.real - min.real)/width);
c.imag = min.imag + ((float) y * (max.imag - min.imag)/height);
color = calc_pixel(c);
send(&x, &y, &color, master);
}
```

Dynamic Task Assignment

13 / 84

- discussion point: why would we expect static assignment to be sub-optimal for the Mandelbrot set calculation? Would any regular static decomposition be significantly better (or worse)?
- usa a pool of **over-decomposed** tasks that are dynamically assigned to next requesting process:

Processor Farm: Master


```
count = 0:
2 row = 0;
 for (slave = 1; slave < nproc; k++){</pre>
    send(&row, slave, data_tag);
4
    count++;
6
    row++;
  }
8 do {
    recv(&slave, &r, &color, any_proc, result_tag);
10
    count --:
    if (row < height) {</pre>
       send(&row, slave, data_tag);
12
       row++;
       count++;
14
    } else
16
      send(&row, slave, terminator_tag);
    display_vector(r, color);
18 } while (count > 0):
```

Processor Farm: Slave

	<pre>const int master = 0; //proc id.</pre>
2	<pre>recv(&y, master, any_tag, source_tag);</pre>
	<pre>while (source_tag == data_tag) {</pre>
4	<pre>c.imag = min.imag + ((float) y * (max.imag - min.imag)/height);</pre>
	for $(x = 0; x < width; x++) {$
6	<pre>c.real = min.real + ((float) x * (max.real - min.real)/width);</pre>
	<pre>color[x] = calc_pixel(c);</pre>
8	}
	<pre>send(&myid, &y, color, master, result_tag);</pre>
10	<pre>recv(&y, master, source_tag);</pre>
	}

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Analysis

Let p, m, n, I denote nproc, height, width, MaxIter:

- sequential time: (t_f denotes floating point operation time) $t_{seq} \leq I \cdot mn \cdot t_f = O(mn)$
- parallel communication 1: (neglect t_h term, assume message length of 1 word)

 $t_{\rm com1}=2(p-1)(t_s+t_w)$

• parallel computation:

$$t_{\rm comp} \leq \frac{I \cdot mn}{p-1} t_f$$

• parallel communication 2:

$$t_{\mathrm{com}2} = \frac{m}{p-1}(t_s + t_w)$$

overall:

$$t_{\mathrm{par}} \leq rac{l \cdot mn}{p-1} t_f + (p-1+rac{m}{p-1})(t_s+t_w)$$

Discussion point: What assumptions have we been making here? Are there any situations where we might still have poor performance, and how could we mitigate this?

Computer Systems (ANU)

Example#2: Monte Carlo Methods

- use random numbers to solve numerical/physical problems
- $\bullet\,$ evaluation of π by determining if random points in the unit square fall inside a circle

Monte Carlo Integration

• evaluation of integral
$$(x_1 \le x_i \le x_2)$$

area =
$$\int_{x_1}^{x_2} f(x) dx = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i)(x_2 - x_1)$$

example

$$I = \int_{x_1}^{x_2} (x^2 - 3x) \, dx$$

sum = 0; for (i = 0; i < N; i++) { xr = rand_v(x1, x2); sum += xr * xr - 3 * xr; } area = sum * (x2 - x1) / N;

> • where rand_v(x1, x2) computes a pseudo-random number between x1 and x2

Computer Systems (ANU)

01 Nov 2017 18 / 84

Parallelization

- only problem is ensuring each process uses a different random number and that there is no correlation
- one solution is to have a unique process (maybe the master) issuing random numbers to the slaves

Parallel Code: Integration

Master (process 0):

```
Slave:
  for (i = 0; i < N/n; i++) {</pre>
    for (j = 0; j < n; j++)</pre>
2
       xr[j] = rand_v(x1, x2);
                                          const int master = 0; //proc id.
    recv(any_proc, req_tag, &p_src)
                                          sum = 0:
                                          send(master, req_tag);
    send(xr, n, p_src, comp_tag);
                                          recv(xr, &n, master, tag);
6 }
                                          while (tag == comp_tag) {
  for (i=1; i < nproc; i++) {</pre>
                                            for (i = 0; i < n; i++)</pre>
                                              sum += xr[i]*xr[i] - 3*xr[i]
     recv(i, req_tag);
8
                                            send(0, req_tag);
      send(i, stop_tag);
10 }
                                            recv(xr, n, master, &tag);
  sum = 0:
                                          }
12 reduce_add(&sum, p_group);
                                          reduce_add(&sum, p_group);
```

Question: performance problems with this code?

01 Nov 2017 20 / 84

3

Parallel Random Numbers

- linear congruential generators $x_{i+1} = (ax_i + c) \mod m$ (a, c, and m are constants)
- using property $x_{i+p} = (A(a, p, m)x_i + C(c, a, p, m)) \mod m$, we can generate the first p random numbers sequentially to repeatedly calculate the next p numbers in parallel

Summary: Embarrassingly Parallel Problems

- defining characteristic: tasks do not need to communicate
- non-trivial however: providing input data to tasks, assembling results, load balancing, scheduling, heterogeneous compute resources, costing
 - static task assignment (lower communication costs) vs.
 dynamic task assignment + overdecomposition (better load balance)
- Monte Carlo or ensemble simulations are a big use of computational power!
- the field of grid computing arose to solve this issue

Embarrassingly Parallel Problems

Hands-on Exercise: Embarrassingly || Problems

< ロ > < 同 > < 三 > < 三

Australian

Outline

Embarrassingly Parallel Problems

2 Parallelisation via Data Partitioning

- 3 Synchronous Computations
- 4 Parallel Matrix Algorithms

Outline: Parallelisation via Data Partitioning

- partitioning strategies
- vector summation via partitioning, via divide-and-conquer
- binary trees (divide-and-conquer)
- bucket sort
- numerical integration adaptive techniques
- N-body problems

Challenge from PS1: can you write a well-balanced parallel Mandelbrot set program using static task assignment?

Partitioning Strategies

- replicated data approach (no partitioning)
 - each process has entire copy of data but does subset of computation
- partition program data to different processes
 - most common
 - strategies: domain decomposition, divide-and-conquer
- partitioning of program functionality
 - much less common
 - functional decomposition
- consider the addition of numbers

$$s = \sum_{i=0}^{n-1} x_i$$

Parallelisation via Data Partitioning

Example#1: Simple Summation of Vector

Master/Slave Send/Recv Approach

Master:

```
1 s = n / m;
for (i = 0, x = 0; i < m; i++, x = x + s)
3 send(&numbers[x], s, i+1 /*slave id*/);
5 sum = 0;
for (i = 0; i < m; i++) {
7 recv(&part_sum, any_proc);
sum = sum + part_sum;
9 }
```

Slave:

```
1 recv(numbers, s, master);
part_sum = 0;
3 for (i = 0; i < s; i++)
part_sum = part_sum + numbers[i];
5 send(&part_sum, master);</pre>
```

E Sac

Using MPI_Scatter and MPI_Reduce

See man MPI_Scatter and man MPI_Reduce

- NOT master/slave
- the root sends data to all processes (including itself)
- note related MPI calls:
 - MPI_Scatterv(): scatters variable lengths
 - MPI_Allreduce(): returns result to all processors

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Analysis

Sequential:

• n-1 additions thus O(n)

Parallel (p = m):

- communication #1: $t_{\text{scatter}} = p(t_s + \frac{n}{p}t_w)$
- computation #1: $t_{\text{partialsum}} = \left(\frac{n}{\rho}\right) t_f$
- communication #2: $t_{\text{reduce}} = p(t_s + t_w)$
- computation #2: $t_{\rm finalsum} = (p-1)t_f$
- overall: $t_{\rm p} = 2 p t_s + (n+p) t_w + (n/p+p-1) t_f = O(n+p)$
- worse than sequential code!!

Discussion point: in this example, we are assuming the associative property of addition (+)? Is this strictly true for floating point numbers? What impact does this have for such parallel algorithms?

Domain Decomposition via Divide-and-Conquer

- problems that can be recursively divided into smaller problems of the same type
- recursive implementation of the summation problem:

```
int add(int *s) {
    if (numbers(s) == 1)
        return (s[0]);
    else {
        divide(s, s1, s2);
        part_sum1 = add(s1);
        part_sum2 = add(s2);
        return (part_sum1 + part_sum2);
        }
    }
```

Australian

National

Binary Tree

- divide-and-conquer with binary partitioning
- note number of working processors decreases going up the tree

Simple Binary Tree Code


```
/* Binary Tree broadcast
    a) 0->1
2
    b) 0 \rightarrow 2, 1 \rightarrow 3
    c) 0->4, 1->5, 2->6, 3->7
4
    d) 0->8, 1->9, 2->10, 3->11, 4->12, 5->13, 6->14, 7->15
6
  */
    10 = 1:
    while (lo < nproc) {</pre>
8
       if (me < lo) {
         id = me + lo:
         if (id < nproc)</pre>
            send(buf, lenbuf, id);
       }
       else if (me < 2*lo) {</pre>
14
         id = lo:
         recv(buf, lenbuf, id);
       }
       10 *= 2:
     }
```

This is used to scatter the vector; the reverse algorithm combines the partial sums. $(\Box \rightarrow \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle)$

Computer Systems (ANU)

01 Nov 2017 33 / 84

Analysis

- assume n is a power of 2 and ignoring t_s
- communication#1: divide $t_{\text{divide}} = \frac{n}{2}t_w + \frac{n}{4}t_w + \frac{n}{8}t_w + \cdots + \frac{n}{p}t_w = \frac{n(p-1)}{p}t_w$
- communication#2: combine
 t_{combine} = lg p · t_w
- computation:

$$t_{\rm comp} = (\frac{n}{p} + \lg p)t_f$$

• total:

$$t_{p} = \left(\frac{n(p-1)}{p} + \lg p\right)t_{w} + \left(\frac{n}{p} + \lg p\right)t_{f}$$

• slightly better than before - as p o n, cost o O(n)

Higher Order Trees

• possible to divide data into higher order trees, e.g. a quad tree

- ∢ ∃ ▶

Example#2: Bucket Sort

• Divide number range (a) into m equal regions

$$\left(0 \rightarrow \frac{a}{m} - 1\right), \left(\frac{a}{m} \rightarrow 2\frac{a}{m} - 1\right), \left(2\frac{a}{m} \rightarrow 3\frac{a}{m} - 1\right), \cdots$$

- assign one bucket to each region
- stage 1: numbers are placed into appropriate buckets
- stage 2: each bucket is sorted using a traditional sorting algorithm
- works best if numbers are evenly distributed over the range a
- sequential time

$$t_{\rm s} = n + m((n/m)\lg(n/m)) = n + n\lg(n/m) = O(n\lg(n/m))$$
Sequential Bucket Sort

Sorted Numbers

01 Nov 2017 37 / 84

3

<ロ> (日) (日) (日) (日) (日)

Parallel Bucket Sort#1

• assign one bucket to each process:

Unsorted Numbers

Sorted Numbers

<ロト </p>

Parallel Bucket Sort#2

Unsorted Numbers

Sorted Numbers

- assign p small buckets to each process
- note possible use of MPI_Alltoall()

```
MPI_Alltoall(void* sendbuf, int sendct, MPI_Datatype sendtype,
void* recvbuf, int recvct, MPI_Datatype recvtype,
MPI_Comm comm)
```

Computer Systems (ANU)

Analysis

- initial partitioning and distribution $t_{\text{comm1}} = pt_{\text{s}} + t_{w}n$
- sort into small buckets

$$t_{\rm comp2} = n/p$$

- send to large buckets: (overlapping communications) $t_{\text{comm3}} = (p-1)(t_s + (n/p^2)t_w)$
- sort of large buckets $t_{\text{comp4}} = (n/p) \lg(n/p)$
- total

$$E_{\rm p} = pt_{\rm s} + nt_{\rm w} + n/p + (p-1)(t_{\rm s} + (n/p^2)t_{\rm w}) + (n/p)\log(n/p)$$

- at best O(n)
- what would be the worse case scenario?

Example#3: Integration

• consider the evaluation of an integral using the trapezoidal rule $I = \int_{a}^{b} f(x) dx$

Static Distribution: SPMD Model


```
if (process_id == master) {
    printf("Enter number of regions\n");
    scanf("%d", &n);
}
broadcast(&n, master, p_group)
    region = (b-a)/p;
start = a + region*process_id;
end = start + region;
d = (b-a)/n;
area = 0.0;
for (x = start; x < end; x = x + d)
    area = area + 0.5 * (f(x) + f(x+d)) * d;
reduce_add(&area, master, p_group);</pre>
```

Adaptive Quadrature

- not all areas require the same number of points
- when to terminate division into smaller areas is an issue
- the parallel code will have uneven workload

Example#4: N-Body Problems

- summing long-range pairwise interactions, e.g. gravitation $F = \frac{Gm_a m_b}{r^2}$ where G is the gravitational constant, m_a and m_b are the mass of two bodies, and r is the distance between them
- in Cartesian space:

$$F_{x} = \frac{Gm_{a}m_{b}}{r^{2}} \left(\frac{x_{b}-x_{a}}{r}\right)$$

$$F_{y} = \frac{Gm_{a}m_{b}}{r^{2}} \left(\frac{y_{b}-y_{a}}{r}\right)$$

$$F_{z} = \frac{Gm_{a}m_{b}}{r^{2}} \left(\frac{z_{b}-z_{a}}{r}\right)$$

- what is the total force on the sun due to all other stars in the milky way?
- given the force on each star we can calculate their motions
- molecular dynamics is very similar but the long forces are electrostatic

イロト イポト イヨト イヨト 二日

Simple Sequential Force Code

- aside: how could you improve this sequential code?
- $O(n^2)$ this will get very expensive for large n
- is there a better way?

(日) (周) (三) (三)

Clustering

• idea: the interaction with several bodies that are clustered together but are located at large *r* for another body can be replaced by the interaction with the center of mass of the cluster

46 / 84

Barnes-Hut Algorithm

- start with whole space in one cube
 - divide the cube into 8 sub-cubes
 - delete sub-cubes if they have no particles in them
 - sub-cubes with more than 1 particle are divided into 8 again
 - continue until each cube has only one particle (or none)
- this process creates an oct-tree
- total mass and centre of mass of children sub-cubes is stored at each node
- force is evaluated by starting at the root and traversing the tree, BUT stopping at a node if the clustering algorithm can be used
- scaling is O(n log n)
- load balancing likely to be an issue for parallel code

Barnes-Hut Algorithm: 2D Illustration

How to (evenly?) distribute such a structure? How often to re-distribute? (very hard problem!)

Parallelisation via Data Partitioning

Hands-on Exercise: Bucket Sort

Computer Systems (ANU)

01 Nov 2017 49 / 84

3

(日) (同) (三) (三)

Outline

Embarrassingly Parallel Problems

2) Parallelisation via Data Partitioning

Synchronous Computations

4 Parallel Matrix Algorithms

Overview: Synchronous Computations

- degrees of synchronization
- synchronous example 1: Jacobi Iterations
 - serial and parallel code, performance analysis
- synchronous example 2: Heat Distribution
 - serial and parallel code
 - comparison of block and strip partitioning methods
 - safety
 - ghost points
- Ref: Chapter 6: Wilkinson and Allen

Degrees of Synchronization

- from fully to loosely synchronous
 - the more synchronous your computation, the more potential overhead
- SIMD: synchronized at the instruction level
 - provides ease of programming (one program)
 - well suited for data decomposition
 - applicable to many numerical problems
 - the forall statement was introduced to specify **data parallel** operations

```
forall (i = 0; i < n; i++) {
   data parallel work
}</pre>
```

< ロト < 同ト < ヨト < ヨト

Synchronous Example: Jacobi Iterations

• the Jacobi iteration solves a system of linear equations iteratively

$$a_{n-1,0}x_0 + a_{n-1,1}x_1 + a_{n-1,2}x_2 + \cdots \quad a_{n-1,n-1}x_{n-1} = b_{n-1}$$

$$\vdots$$

$$a_{2,0}x_0 + a_{2,1}x_1 + a_{2,2}x_2 + \cdots \qquad a_{2,n-1}x_{n-1} = b_2$$

$$a_{1,0}x_0 + a_{1,1}x_1 + a_{1,2}x_2 + \cdots \qquad a_{1,n-1}x_{n-1} = b_1$$

$$a_{0,0}x_0 + a_{0,1}x_1 + a_{0,2}x_2 + \cdots \qquad a_{0,n-1}x_{n-1} = b_0$$

where there are *n* equations and *n* unknowns $(x_0, x_1, x_2, \cdots, x_{n-1})$

Jacobi Iterations

• consider equation *i* as:

 $a_{i,0}x_0 + a_{i,1}x_1 + a_{i,2}x_2 + \cdots + a_{i,n-1}x_{n-1} = b_i$ which we can re-cast as: $x_i = (1/a_{i,i})[b_i - (a_{i,0}x_0 + a_{i,1}x_1 + a_{i,2}x_2 + \cdots + a_{i,i-1}x_{i-1} + a_{i,i+1}x_{i+1} + \cdots + a_{i,n-1}x_{n-1})]$ i.e.

$$x_i = \frac{1}{a_{i,i}} \left[b_i - \sum_{j \neq i} a_{i,j} x_j \right]$$

• strategy: guess x, then iterate and hope it converges!

- converges if the matrix is diagonally dominant: $\sum_{i \neq i} |a_{i,j}| < |a_{i,i}|$
- terminate when convergence is achieved:

 $|x^t - x^{t-1}| < \text{error tolerance}$

イロト イポト イヨト イヨト 二日

Sequential Jacobi Code

• ignoring convergence testing:

```
for (i = 0; i < n; i++)</pre>
1
        x[i] = b[i];
     for (iter = 0; iter < max_iter; iter++) {</pre>
3
        for (i = 0; i < n; i++) {</pre>
          sum = -a[i][i] * x[i];
5
          for (j = 0; j < n; j++){</pre>
              sum = sum + a[i][j] * x[j]
7
          3
          new_x[i] = (b[i] - sum) / a[i][i];
9
        3
        for (i = 0; i < n; i++)</pre>
          x[i] = new_x[i];
     }
```

3

(日) (同) (三) (三)

Parallel Jacobi Code

 ignoring convergence testing and assuming parallelisation over n processes:

```
1 x[i] = b[i];
for (iter = 0; iter < max_iter; iter++) {
   sum = -a[i][i] * x[i];
   for (j = 0; j < n; j++){
      sum = sum + a[i][j]*x[j]
   }
7 new_x[i] = (b[i] - sum) / a[i][i];
broadcast_gather(&new_x[i], new_x);
9 global_barrier();
for (i = 0; i < n; i++)
   x[i] = new_x[i];
}
```

 broadcast_gather() sends the local new_x[i] to all processes and collects their new values
 Question: do we really need the barrier as well as this?

Computer Systems (ANU)

Parallelization Strategies

01 Nov 2017 56 / 84

Partitioning

- normally the number of processes is much less than the number of data items
 - **block partitioning**: allocate groups of consecutive unknowns to processes
 - cyclic partitioning: allocate in a round-robin fashion
- analysis: τ iterations, n/p unknowns per process
 - computation decreases with p

$$t_{
m comp} = au(2n+4)(n/p)t_f$$

communication – increases with p

$$t_{\rm comm} = p(t_s + (n/p)t_w)\tau = (pt_s + nt_w)\tau$$

• total - has an overall minimum

$$t_{\rm tot} = ((2n+4)(n/p)t_f + pt_s + nt_w)\tau$$

• question: can we do an all-gather faster than $pt_s + nt_w$?

Parallel Jacobi Iteration Time

Locally Synchronous Example: Heat Distribution

Consider a metal sheet with a fixed temperature along the sides but unknown temperatures in the middle – find the temperature in the middle.

• finite difference approximation to the Laplace equation:

$$\frac{\partial^2 T(x,y)}{\partial x^2} + \frac{\partial^2 T(x,y)}{\partial y^2} = 0$$

$$\frac{T(x+\delta x,y)-2T(x,y)+T(x-\delta x,y)}{\delta x^2}+\frac{T(x,y+\delta y)-2T(x,y)+T(x,y-\delta y)}{\delta y^2}$$

• assuming an even grid (i.e. $\delta x = \delta y$) of $n \times n$ points (denoted as $h_{i,j}$), the temperature at any point is an average of surrounding points:

$$h_{i,j} = \frac{h_{i-1,j} + h_{i+1,j} + h_{i,j-1} + h_{i,j+1}}{4}$$

 problem is very similar to the Game of Life, i.e. what happens in a cell depends upon its neighbours

Computer Systems (ANU)

01 Nov 2017 60 / 84

Heat Equation: Sequential Code

- assume a fixed number of iterations and a square mesh
- beware of what happens at the edges!

(日) (周) (三) (三)

Heat Equation: Parallel Code

- one point per process
- assuming locally-blocking sends:

```
for (iter = 0; iter < max_iter; iter++) {</pre>
    g = 0.25*(w + x + y + z);
    send(&g, P(i-1,j));
3
    send(&g, P(i+1,j));
    send(&g, P(i,j-1));
5
    send(&g, P(i,j+1));
    recv(&w, P(i-1,j));
7
    recv(&x, P(i+1,j));
    recv(&y, P(i,j-1));
9
    recv(&z, P(i,j+1));
11
  }
```

- sends and receives provide a local barrier
 - each process synchronizes with 4 others surrounding processes

(日) (周) (三) (三)

Heat Equation: Partitioning

- normally more than one point per process
- option of either block or strip partitioning

Block Partitioning

Strip Partitioning

(日) (同) (三) (三)

Block/Strip Communication Comparison

• **block partitioning**: four edges exchanged (*n*² data points, *p* processes)

$$t_{\rm comm} = 8(t_s + \frac{n}{\sqrt{p}}t_w)$$

• strip partitioning: two edges exchanged

$$t_{\rm comm} = 4(t_s + nt_w)$$

Parallelization Strategies

Block/Strip Optimum

• **block** communication is larger than **strip** if:

$$8\left(t_{s} + \frac{n}{\sqrt{p}}t_{w}\right) > 4(t_{w} + nt_{w})$$

i.e. if $t_{s} > n\left(1 - \frac{2}{\sqrt{p}}\right)t_{w}$

Computer Systems (ANU)

Parallelization Strategies

▶ < ≣ ▶ ≣ ∽ ९ C 01 Nov 2017 65 / 84

Safety and Deadlock

- with all processes sending and then receiving data, the code is unsafe: it relies on **local buffering** in the send() function
 - potential for deadlock (as in Prac 1, Ex 3)!
- alternative #1: re-order sends and receives e.g. for **strip partitioning**:

```
if ((myid % 2) == 0){
    send(&g[1][1], n, P(i-1));
    recv(&h[1][0], n, P(i-1));
    send(&g[1][n], n, P(i+1));
    recv(&h[1][n+1], n, P(i+1));
    } else {
    recv(&h[1][0], n, p(i-1));
    send(&g[1][1], n, p(i-1));
    recv(&h[1][n+1], n, p(i+1));
    send(&g[1][n], n, p(i+1));
    }
```

Computer Systems (ANU)

Parallelization Strategies

01 Nov 2017 67 / 84

Australian

National

Alt# 2: Asynchronous Comm. using Ghostpoints

- assign extra receive buffers for edges where data is exchanged
 - typically these are implemented as extra rows and columns in each process' local array (known as a halo)
- can use asynchronous calls (e.g. MPI_Isend())

Synchronous Computations

Computer Systems (ANU)

Parallelization Strategies

01 Nov 2017 68 / 84

3

Image: A match a ma

Outline

Embarrassingly Parallel Problems

- 2) Parallelisation via Data Partitioning
- 3 Synchronous Computations
- 4 Parallel Matrix Algorithms

Matrix Multiplication

- matrix multiplication is the dominant computation in linear algebra and neural net training
 - tensor operations are broken down to matrix operations on TPUs and GPUs!
- C += AB, where A, B, C are $M \times K, K \times N, M \times N$ matrices, respectively
- $c_{i,j} += \sum_{k=0}^{K-1} a_{i,k} b_{k,j}$, for $0 \le i < M, 0 \le j < N$
- we will primarily consider the case M = N, K < N

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Matrix Process Topologies and Distributions

- use a logical two-dimensional
 - $p = p_V \times p_X$ process grid
 - e.g. a process with ID rank r has a 2D rank (r_y, r_x) , where

$$r = r_y p_x + r_x,$$

- $0 \le r_x < p_x, 0 \le r_y < p_y$ for performance, $\frac{p_y}{p_x} \approx \frac{M}{N}$ is generally optimal (best local multiply speed, lowest communication volume)
- here, a block distribution over the whole 4×4 process grid is used for C

イロト イポト イヨト イヨト

• notice that A(B) must be aligned to be on the same process rows (columns) as C

Rank-K Matrix Multiply: Simple Case

- consider the simplest case where K is small enough and A(B) are distributed block-wise over a single process column (row)
- assume local matrix sizes are $m = \frac{M}{p_y}, n = \frac{N}{p_x}$
- denoting A, B, C as local portions of the matrices, the parallel multiply can be done by:
 - row-broadcast from col $r_x = 0$ of A (size $m \times K$ result in As)
 - **2** column-broadcast for row $r_y = 0$ of B (size $K \times n$, result in Bs)
 - Operform local matrix multiply of As, Bs and c

イロト 不得下 イヨト イヨト 二日

Parallelization Strategies
Parallel Matrix Algorithms

Rank-K Matrix Multiply: General Case

All processes may have some columns of the distributed matrix A

 e.g. matrix A with K = 8, distributed across a 3 × 3 process grid

 each process column must broadcast its portion, storing result in As (a 'spread' of the K-dim. of A)

(日) (同) (三) (三)

Algorithm now becomes:

- row-wise all-gather of A (result in As, size $m \times K$)
- 2 column-wise all-gather of B (result in Bs, size $K \times n$)
- I perform local matrix multiply of As, Bs and c

If $K \not| p_x, p_y$, we can 'pad out' matrices (or use MPI_Allgatherv()).

If K is large, we can reduce the size of As and Bs, by breaking this down into stages.

2D Process Topology Support in MPI

This involves creating a periodic 2D cartesian topology, followed by row and column communicators:

```
int np, rank, px, py;
2 MPI_Comm comm2D, commRow, commCol; int dims[2], rank2D, r2D[2];
 int periods[] = {1,1}, rowSpec[] = {1,0}, colSpec[] = {0,1};
4 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_rank(MPI_COMM_WORLD, &np);
6 px = ...; py = np / px; assert (px * py == np);
 dims[0] = px, dims[1] = py;
8 MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm2D);
 MPI_Comm_rank(comm2D, &rank2D); //likely that rank2d==rank
10 MPI_Cart_coords(comm2D, rank2D, 2, r2D);
 // create this process' 1D row / column communicators
12 MPI_Cart_sub(comm2D, rowSpec, &commRow); //of size px
 MPI_Cart_sub(comm2D, colSpec, &commCol); //of size py
14 MPI_Comm_rank(commRow, &rx); MPI_Comm_rank(commCol, &ry);
  assert (rx == r2D[0] && ry == r2D[1]);
```

MPI Rank-K Update Algorithm

- an $m \times n$ local matrix C can be represented as the pair (c, ldc), where double *c points to the 0th element, the leading dimension int ldc $\geq m$ and $c_{i,j}$ is stored c[i + j*ldc]
- defining a datatype for A will avoid an explicit pack operation:

```
MPI_Datatype aCol;
MPI_Type_vector(1, m, ldA, MPI_DOUBLE, &aCol);
MPI_Type_commit(&aCol);
```

• in order to use Bs directly for a local matrix multiply (dgemm()) we must transpose and pack B:

```
double Bt[n*kB], As[m*K], Bs[n*K]; int i, j;
for (i=0; i < kB; i++)
for (j=0; j < n; j++)
4 Bt[j + i*n] = B[i + j*ldB];
MPI_Allgather(A, kA, aCol, As, m*kA, MPI_DOUBLE, commRow);
6 MPI_Allgather(Bt, n*kB, MPI_DOUBLE, Bs, n*kB, MPI_DOUBLE,
commCol);
dgemm_("NoTrans", "Trans", m, n, K, As, m, Bs, n, C, ldC);
```

(non-unit stride on the K-dim. is generally non-optimal for the multiply)

Australian

National

Parallel Matrix Algorithms

Matrix Multiplication: AB^T Case

- consider $C += AB^T$, where N < K = M
- this variant of the algorithm is:
 - column-wise all-gather of B (result in Bs, size N × kB)
 - 2 create a workspace c_s of size $m \times N$
 - Operform local matrix multiply of A, Bs and Cs

(日) (同) (三) (三)

• row-wise reduce-scatter of c_s (add result to c, size $m \times nC$)

• there is an analogous variant for $C += A^T B$, efficient for M < K = N

• general matrix multiply algorithm: choose variant involving least data movement, performing a global transposition if needed

Computer Systems (ANU)

Parallelization Strategies

- symmetric eigenvalue algorithm arguably even more important
- idea: express vector operations of original algorithm into blocks
 - majority of operations are now matrix-matrix
 - transforms algorithm from data-access to computation bound
- normal block distribution inadequate for || algorithms!

 blocked LU factorization (LINPACK) rated in the Top 10 Algorithms of the 20th Century (CS&E, Jan 2000)

Ν

01 Nov 2017

77 / 84

U

Ν

Matrix Distributions: Block-Cyclic

- Australian National University
- is 'standard' for || LA (load balance on triangular & sub- matrices)
- divide the global matrix A into b_y × b_x blocks on a P × Q array; if block (0,0) is on process (r_y, r_x), block (i, j) is on process ((i + r_y)%p_y, (j + r_x)%p_x)
- e.g. $r_y = r_x = 0, b_y = 3, b_x = 2$ on a 2 \times 3 array, a 10 \times 10 matrix A:

a ₀₀	a_{01}	<i>a</i> 06	<i>a</i> 07	<i>a</i> ₀₂	<i>a</i> 03	<i>a</i> 08	<i>a</i> 09	<i>a</i> ₀₄	<i>a</i> 05		
a ₁₀	a_{11}	a ₁₆	a ₁₇	a ₁₂	a ₁₃	a ₁₈	<i>a</i> ₁₉	<i>a</i> ₁₄	a_{15}		
a ₂₀	a ₂₁	a ₂₆	a ₂₇	a ₂₂	a ₂₃	a ₂₈	a ₂₉	a ₂₄	a ₂₅		
a ₆₀	a_{61}	a ₆₆	a ₆₇	a ₆₂	a ₆₃	a ₆₈	a ₆₉	a ₆₄	a ₆₅		
a ₇₀	a ₇₁	a ₇₆	a ₇₇	a ₇₂	a ₇₃	a ₇₈	<i>a</i> 79	<i>a</i> 74	a ₇₅		
<i>a</i> 80	a ₈₁	a ₈₆	a ₈₇	a ₈₂	a ₈₃	a 88	a 89	<i>a</i> ₈₄	a ₈₅		
a ₃₀	a ₃₁	a ₃₆	a ₃₇	a ₃₂	<i>a</i> 33	<i>a</i> ₃₈	a 39	<i>a</i> ₃₄	<i>a</i> 35		
<i>a</i> ₄₀	<i>a</i> ₄₁	<i>a</i> 46	<i>a</i> 47	a ₄₂	a 43	<i>a</i> ₄₈	a 49	<i>a</i> 44	<i>a</i> 45		
a ₅₀	a ₅₁	a ₅₆	a ₅₇	a ₅₂	a ₅₃	a ₅₈	a ₅₉	a ₅₄	a ₅₅		
<i>a</i> 90	a ₉₁	a ₉₆	<i>a</i> 97	a ₉₂	<i>a</i> 93	<i>a</i> 98	<i>a</i> 99	<i>a</i> 94	<i>a</i> 95		
				4							

Matrix Multiply on the Block-Cyclic Distribution

- e.g. matrix A with K = 8, distributed across a 3 × 3 process grid
- each process column must broadcast its portion, storing result in As (a 'spread' of the K-dim. of A)

< ロ > < 同 > < 三 > < 三

The 'spread' of the K-dim. of A should respect the global order of indices

- MPI_Allgather() will not give this order
- unless $p_x = p_y$ and $b_x = b_y$, must re-order columns in As, Bs before calling dgemm()

Blocked LU Factorization Algorithm

• right-looking variant using partial pivoting on an $N \times N$ matrix A

Blocked LU Factorization: Communication

- let r_x^i (r_y^i) denote the process row (column) rank holding $A_{i,i}$
- assume $w = b_x = b_y$ (one process row (column) holds U^j (L^j) panel)

for (j=0; j < N; j+=w)
for (i=j; i < j+w; i++) (note
$$r_x^i = r_x^j, r_y^i = r_y^j$$
)
find $P[i]$ s.t. $|A_{P[i], i}| \ge |A_{i:N-1, i}|$ (all-reduce on col. r_x^i)
 $A_{i, j:j'-1} \leftrightarrow A_{P[i], j:j'-1}$ (swap on processes (r_y^i, r_x^i) and $(r_y^{P[i]}, r_x^i)$)
 $l^i \leftarrow l^i / A_{i,i}$ (broadcast $A_{i,i}$ on col. r_x^i from row r_y^i)
 $L^i \leftarrow L^i - l^i u^i$ (broadcast l^i on col. r_x^i from row r_y^i)
for (i = j; i < j+w; i++)
 $A_{i,:} \leftrightarrow A_{P[i],:}$ (swap on processes (r_y^i, r_x^i) and $(r_y^{P[i]}, r_x^i)$)
 $U^j \leftarrow (T^j)^{-1} U^j$ (broadcast T^j on col. r_x^j from row r_y^j)
 $A^j \leftarrow A^j - L^j U^j$ (row (col.) broadcast L^j (U^j) from col. r_x^j (row r_y^j))

- exercise: implement this using MPI and BLAS!
 - need to calculate local lengths for vector of length say N-j from say process row $r_{\rm v}^j$

Parallel Factorization Analysis and Methods

- Australian National University
- performance is determined by load balance and communication overhead issues
- for an N × N matrix on a p_x × p_x process grid, || execution time is: t(N) = c₁Nt_s + c₂N²/p_xt_w + c₃N³/p_x²t_f As c₁ = O(lg₂ p_x) > c₂ > c₃ and typically t_f ≈ 10³, the t_s term can be significant for small-moderate N/p_x. Note: t_s mainly due to software: several layers of function calls, error checking, message header formation, buffer allocation & search
 storage blocking: (ω = b_x = b_y)
 - simplest to implement, minimizes number of messages
 - suffers from O(b_x + b_y) load imbalance on panel formation:
 i.e. one processor column (row) holds Lⁱ (Uⁱ); also in Aⁱ ← Aⁱ − LⁱUⁱ
- ullet algorithmic blocking: can use ${}_{\tt dgemm}{}$ -optimal $\omega,\ b_{\! X}=b_{\! y}\approx 1$
 - greatly reduces these imbalances, ||izes row swaps
 - introduces 4N extra messages; local panel width is small ($\approx \omega/p_{x}$)
- lookahead (High Performance Linpack)
 - eliminates load imbalance in forming L^i by computing it in advance
 - hard to implement; only applicable to some computations

Topics covered today involve the message passing paradigm:

- issues in parallelizing 'embarrassingly parallel' problems
- parallelizing by domain decomposition
- synchronous computations (mainly using domain decomposition)
- case study: parallel matrix multiply and factorization

Tomorrow - the Partitioned Global Address Space paradigm

Hands-on Exercise: Matrix Multiply

(日) (同) (三) (三)