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Parallel Input/Output (I)

Hands-on Exercise: Lustre Benchmarking
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Parallel Input/Output (II)

Hands-on Exercise: Lustre Striping
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System Support and Runtimes for Message Passing
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System Support and Runtimes for Message Passing

Operating System Support

distributed memory supercomputer nodes have many cores, typically
in a NUMA configuration
OS must support efficient (remote) process creation

typically the TCP transport will be used for this
The MPI runtime must also use efficient ssh ‘broadcast’ mechanism

e.g. on Vayu (Raijin’s predecessor), a 1024 core job required 2s for
pre-launch setup, 4s to launch processes

the OS must avoid jitter, particularly problematic for large-scale
synchronous computations

support process affinity: binding processes/threads to particular cores
(e.g. Linux get/set_cpu_affinity())
support NUMA affinity: ensure (by default) memory allocations is on
the adjacent NUMA domain to the core
support efficient interrupt handling (from network traffic)
otherwise ensure all system calls are handled quickly and evenly (limit
amount of ‘book-keeping’ done in any kernel mode switch)

Alternately devote 1 core to OS to avoid this (IBM Blue Gene)
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System Support and Runtimes for Message Passing

Interrupt Handling

by default, all cores handle incoming interrupts equally (SMP)

potentially, interrupts cause high (L1) cache and TLB pollution, as
well as delay (switch to kernel context, time to service) threads
running on the servicing core
solutions:

OS can consider handling all on one core (which has no
compute-bound threads allocated to it)
two-level interrupt handling (used on GigE systems):

top-half interrupt handler simply saves any associated data and
initiates the bottom-half handler
e.g. (for a network device) handler simply deposits incoming packets
into an appropriate queue
the core running the interrupt’s destination process should service the
bottom-half interrupt

use OS bypass mechanisms (e.g. Infiniband): initiate RDMA transfers
from user-level, detect incoming transfers instead by polling

an interrupt informs initiating process when transfer complete
also enables very fast latencies! (< 1µs)

Computer Systems (ANU) Distributed HPC Systems 03 Nov 2017 9 / 40



System Support and Runtimes for Message Passing

MPI Profiling Support
how is it that we can turn on MPI profilers without even having to
recompile our programs? (module load ipm; mpirun -np 8 ./heat)

in MPI’s profiling layer PMPI, every MPI function (e.g. MPI_Send()) by
default ‘points’ to a matching PMPI function (e.g. PMPI_Send()):

#pragma weak MPI_Send = PMPI_Send

2 int PMPI_Send(void *buf , ... ) {

/*do the actual Send operation */ .... }

thus the app. or a library (e.g. IPM) can provide a customized version
of the function (i.e. for profiling), e.g.

1 static int nCallsSend = 0;

int MPI_Send(void *buf , ...) {

3 nCallsSend ++; PMPI_Send(buf , ...); }

MPI provides a MPI_Pcontrol(int level, ...) function which by default
is a no-op but may be similarly redefined

IPM provides MPI_Pcontrol(int level, char *label)

level = +1 (-1): start (end) profiling a region, called label

level = 0: invoke a custom event, called label
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System Support and Runtimes for Message Passing

OpenMPI Architecture

based on the Modular Component Architecture (MCA)

each component framework within the MCA is dedicated to a single
task, e.g. providing parallel job control or performing collective
operations

upon demand, a framework will discover, load, use, and unload
components

OpenMPI component schematic:

(courtesy L. Graham et al, Open MPI: A Flexible High Performance MPI, EuroPVMMPI’06)
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System Support and Runtimes for Message Passing

OpenMPI Components

MPI: handles top-level MPI function calls

Collective Communications: the back-end of MPI collective
operations has SM-optimizations

Point-to-point Management Layer (PML): manages all message
delivery (including MPI semantics). Control messages are also
implemented in the PML

handles message matching, fragmentation and re-assembly,
selects protocols depending on message size and network capabilities
for non-blocking sends and receives, a callback function is registered, to
be called when a matching transfer is initiated

BTL Management Layer (BML): during MPI_Init(), discovers all
available BTL components, and which processes each of them will
connect to

users can restrict this,
i.e. mpirun --mca btl self,sm,tcp -np 16 ./mpi program
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System Support and Runtimes for Message Passing

OpenMPI Components (II)

Byte-Transfer-Layer Layer (BTL): handles point-to-point data
delivery

the default shared memory BTL copies the data twice: from the send
buffer to a shared memory buffer, then to the receive buffer
connections between process pairs are lazily set up when the first
message is attempted to be sent

MPool (memory pool): provides send/receive buffer allocation &
registration services

registration is required on IB & similar BTLs to ‘pin’ memory; this is
costly and cannot be done as a message arrives

RCache (registration cache): allows buffer registrations to be cached
for later messages

Note: whenever an MPI function is called, the implementation may choose
to search all message queues of the active BTLs for recently arrived
messages (this enables system-wide ‘progress’).
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System Support and Runtimes for Message Passing

Message Passing Protocols via RDMA

message passing protocols are usually
implemented in terms of Remote
Direct Memory Access (RDMA)
operations

each process contains queues: a
pre-defined location in memory to
buffer send or receive requests

these requests specify the message
‘envelope’ (source/destination process
id, tag, size)
remote processes can write to these
queues
also can read/write into buffers (once
they know its address)

(courtesy Grant & Olivier, Networks and MPI for

Cluster Computing)
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System Support and Runtimes for Message Passing

Message Passing Protocols via RDMA

(courtesy Danalis et at, Gravel: A Communication Library to Fast Path MPI, EuroMPI’08
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System Support and Runtimes for Message Passing

Consumer-initiated RDMA-write Protocol

This supports the usual rendezvous protocol.

consumer sends the receive message envelope (with the buffer
address) to producer’s receive-info queue

when producer posts a matching send, its reads this message envelope
(or blocks till it arrives)

producer transfers data via an RDMA-write, then sends the send
message envelope to consumer’s RDMA-fin queue

the consumer blocks till this arrives

The Producer-initiated RDMA-write Protocol supports
MPI_Recv(..., MPI_ANY_SOURCE)):

producer sends the send message envelope to the consumer’s
send-info queue.

when consumer posts a matching receive, it reads this envelope from
the queue (or blocks until one arrives). Then, it continues as above.
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System Support and Runtimes for Message Passing

Other RDMA Protocols

The Producer-initiated RDMA-read Protocol can also support the
rendezvous protocol:

the producer sends the message envelope (with send buffer address)
to the consumer’s send-info queue

when the consumer posts a matching receive, it reads the envelope
from the ledger (or blocks till it arrives)

it then does an RDMA-read to perform the transfer

when complete, it sends a the message envelope to the producer’s
rdma-fin queue

Eager protocol: producer writes the data into a pre-defined remote buffer
and then sends the message envelope to consumer’s send-info queue.
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System Support and Runtimes for Message Passing

RDMA Queue Implementation

Generally, the producer (remote node) adds items to the queues, the
consumer (local node) removes them. Issues:

how does producer know the addresses of remote queues/buffers?

are per-connection queues and buffers needed?

what happens if the producer gets too far ahead?

Implementation is generally done via a ring buffer with fixed size entries:
* * * * *

↑ ↑
h t

Adding an element involves the remote:

fetching of h and t (check h < t)

increment of h

writing the new entry at the hth element,

adding to the latency! A similar scheme can be used for the data buffers.
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System Support and Runtimes for Message Passing

Case Study in System-related Performance Issues

Profiling the MetUM global atmosphere model on the Vayu IB cluster, Jan
2012 (p2-4,7,14-16,18,9)

without process and NUMA affinity, there is vastly greater variability
in performance

loss of NUMA affinity even on 2 processes (out of 1024) resulted in
30% loss of performance

an algorithm requiring many IB connections per process created very
large startup costs (and was from then much slower!)

involves the creation of many buffers for queues etc, their registration
and exchange to the remote process
avoid such algorithms where possible!

for large number of process, required increasing amounts of pinned
memory (even though application data / process is decreasing!)
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System Support and Runtimes for Message Passing

Message Passing Support on Virtualized Clusters

Virtualized HPC nodes (e.g. on
AWS) have several advantages:

users can fully customize
their environment, better
security

OS is no longer tied to
physical nodes (flexible
Windows/Linux systems)
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However, virtualized (network) I/O inherently has a number of overheads;
also, they usually use TCP/IP transports (e.g. 10GigE). Solutions include:

allowing the ‘user’ OS to directly access network interfaces
e.g. VMM-bypass (Xen) or SR-IOV (currently works on KVM and IB)
(SR-IOV allows a network adaptor to be shared by multiple user OSs)
TCP/IP protocol processing offload, to specialized NICs, or to a
dedicated core on the node (in the case of Xen, running the Driver
Domain)

Computer Systems (ANU) Distributed HPC Systems 03 Nov 2017 20 / 40

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-


System Support and Runtimes for Message Passing

Hands-on Exercise: OpenMPI Implementation
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Hybrid OpenMP/MPI, Outlook and Reflection

Outline

1 Parallel Input/Output (I)

2 Parallel Input/Output (II)

3 System Support and Runtimes for Message Passing

4 Hybrid OpenMP/MPI, Outlook and Reflection
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Hybrid OpenMP/MPI, Outlook and Reflection

Hybrid OpenMP / MPI Parallelism: Ideas

(courtesy Grant & Olivier, Networks and MPI for Cluster Computing)
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Hybrid OpenMP/MPI, Outlook and Reflection

Hybrid OpenMP / MPI Parallelism: Motivations

message passing and shared memory programming paradigms are not
mutually exclusive

we can (easily) create and use OpenMP threads within an MPI
application

almost all supercomputers today have large (8+ core) nodes
connected to a high speed network

i.e. native shared / distributed memory hardware within / between
nodes

natural to reflect this in the programming model

idea: use OpenMP to parallelize an application over the cores (or
NUMA domains) within a node, and MPI to parallelize across nodes

a hierarchical programming model better reflects the increasing
complexity of nodes (core count, NUMA domains) and should have
performance advantages
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Hybrid OpenMP/MPI, Outlook and Reflection

Hybrid OpenMP/MPI: Possible Advantages

reduces the number of MPI processes and associated overheads
(creation, connection management, memory footprint)

also reduce communication startups and (sometimes) volume

collectives are (should be) faster via native shared memory

a dedicated thread for MPI can improve messaging performance
(overlap communication with computation)

balance dynamically varying loads between processes (on one node)

OpenMP is capable of handling threads dynamically, in a relatively
lightweight fashion

benefits of data sharing between threads: enhanced shared cache
performance
(however, pure MPI will minimize cache coherency overheads

obtain extra parallelization when the MPI implementation restricts
the number of processes (e.g. NAS BT benchmark restricted to
p = k2 processes)
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Hybrid OpenMP/MPI, Outlook and Reflection

MPI Threading: Vector Mode

Outside parallel regions, the master thread calls MPI.
e.g. Jacobi heat.c program

do {

2 iter ++;

jst = rank*chk +1;

4 jfin = (jst+chk > Ny -1)? Ny -1: jst+chk;

#pragma omp parallel for private(i)

6 for (j = jst; j < jfin; j++)

for (i = 1; i < Nx -1; i++) {

8 tnew[j*Nx+i] = 0.25*( told[j*Nx+i+1]+...+ told[(j-1)*Nx+i]);

// end of parallel region - implicit barrier

10

if (rank+1 < size) {

12 jst = rank*chk+chk;

MPI_Send (&tnew[jst*Nx],Nx, MPI_DOUBLE , rank+1, 2, ...);

14 }

...

16 } while (iter < Max_iter);

Relatively easy incremental parallelization using OpenMP directives.
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Hybrid OpenMP/MPI, Outlook and Reflection

MPI Threading: Thread Mode
A single thread handles MPI while others run. Here heat.c becomes

#pragma omp parallel private(tid , iter , j, i, jst , jfin)

2 { int tid = omp_get_thread_num (),

nthr = omp_get_num_threads () -1, chkt;

4 do { iter ++;

if (tid > 0) { //do the computation

6 jst = rank*chk +1;

jfin = (jst+chk > Ny -1)? Ny -1: jst+chk;

8 chkt = (jfin - jst + nthr - 1) / nthr;

jst += chkt*tid; jfin = (jst+chkt > jfin)? jfin: jst+chkt;

10 for (j = jst; j < jfin; j++)

...

12 } else { // thread 0 handles MPI

if (rank+1 < size) { //race hazard here?

14 jst = rank*chk+chk;

MPI_Send (&tnew[jst*Nx], Nx , MPI_DOUBLE , rank+1, 2, ...);

16 } ...

} ...

18 } while (iter < Max_iter); } // parallel region

Sychronization of thread 0 and others problematic; blows up code;
non-incremental.
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Hybrid OpenMP/MPI, Outlook and Reflection

MPI Thread Support: The 4 Levels

MPI_THREAD_SINGLE: only one thread will execute (standard MPI-only
application)

MPI_THREAD_FUNNELED: only the thread that initialized MPI may call MPI
(usually the master thread).
In thread mode, inside a parallel region, we would need

#pragma omp master // surround with barriers if a

2 MPI_Send(data , ...); // race hazard on data is possible

MPI_THREAD_SERIALIZED: only one thread will may call at any time.
In thread mode, inside a parallel region, we would need:

#pragma omp barrier

2 #pragma omp single

MPI_Send(data , ...);

4 #pragma omp barrier

MPI_THREAD_MULTIPLE any threads may call MPI at any time MPI library
has to ensure thread safety - may have high overhead!
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Hybrid OpenMP/MPI, Outlook and Reflection

Mapping of Threads and Processes

generally, per node, #threads x #processes per = #CPUs

possibly #virtual CPUs, if hyperthreading is available

consider an 8-core 2-socket node
p0

t0 t1 t2 t3 t4 t5 t6 t7
(one process per node)

May get excessive synchronization overheads and NUMA penalties; 1
thread may not be enough to saturate network

p0 p1

t0 t1 t2 t3 t0 t1 t2 t3
(one process per socket)

Once processes are pinned to sockets, optimizes NUMA accesses.
May be a ‘sweet spot’: low synchronization overhead, good L3 cache
re-use between threads, reduced number of processes.

p0 p1 p2 p3

t0 t1 t0 t1 t0 t1 t0 t1
(two processes per socket)

Possibly reduced benefits. May be suitable for dynamic thread
parallelism (1-4 threads per process).
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Hybrid OpenMP/MPI, Outlook and Reflection

Hybrid OpenMP / MPI Job Launch

in application, must change MPI_Init(&argc, &argv) with:
MPI_Init_thread(&argc, &argv, required, &provided)

where int required is one of the 4 MPI levels of thread support (and
provided is set to what your MPI implementation will give you!)

in your batch file

specify the total number of cores for the batch system (as before)
specify the number of thread per process,
e.g. export OMP NUM THREADS = 4

specify the number of processes per node (or socket) for mpirun,
e.g. mpirun -np 64 -npernode 8 ...
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Hybrid OpenMP/MPI, Outlook and Reflection

When to Try Hybrid OpenMP / MPI?

when the scalability of your pure MPI application is lower than desired

or when the L3 cache performance is low due to capacity-caused misses

when MPI parallelization is only partial (e.g. 2D on a 3D problem) (or
otherwise limited)

using OpenMP to parallelize 3rd dimension may leads to better data
‘shape’ per CPU

when problem size is limited by memory per process (important in
‘high-end’ supercomputing)

when the potentially large extra effort of refactoring and maintaining
the hybrid code is worth it! (especially if you want to use thread
mode!)
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Hybrid OpenMP/MPI, Outlook and Reflection

Overview: Outlook and Review

the shared memory coherency wall

multicore/manycore processors

‘high end’ systems

distributed memory programming models
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Hybrid OpenMP/MPI, Outlook and Reflection

The Coherency Wall: Cache Coherency Considered
Harmful!

Recall that hardware shared memory requires a network connecting caches
to main memory with a coherency protocol for correctness.

standard protocols requires a broadcast message for each invalidation

standard MOESI protocol also requires a broadcast on every miss
energy cost of each is O(p); overall cost is O(p2)!
also causes contention (& delay) in the network (worse than O(p2)?)

directory-based protocols better, but only for lightly-shared data

for each cached line, need a bit vector of length p: O(p2) storage cost

false sharing in any case results in wasted traffic

atomic instructions (essential for locks etc) sync the memory system
down to the LLC, cost O(p) energy each!

cache line size is sub-optimal for messages on on-chip networks
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Hybrid OpenMP/MPI, Outlook and Reflection

Multicore/Manycore Processor Outlook

diversity in approaches; post-RISC ideas will still be tried
“two strong oxen or 1024 chickens” (Seymour Cray, late 80’s) debate
to continue

energy issues will generally increase in prominence
overcoming the memory wall continues to be a major factor in
design

increasing portion of design effort and chip area devoted to data
movement

predict the coherency wall will begin to bite at 32 cores
long-term future for inter-socket coherency?

are we now at The End of Moores Law?
Or will Extreme Ultraviolet Lithography (EUV) allow feature size to
shrink from 20nm → 10 nm → 7nm?
domain-specific approaches will become more prevalent
e.g. the emerging killer HPC app: deep learning

Google’s TPU: a 256× 256 systolic array for 8-bit matrix multiply for
AI applications
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Hybrid OpenMP/MPI, Outlook and Reflection

Outlook – High End (Massively Parallel) Systems

the (US) Path to Exascale (2020–2025)

(compute) parallelism a thousand-fold greater than todays systems
memory and I/O performance to improve accordingly with increased
computational rates and data movement requirements.
reliability that enables recovery from faults (probability of hard or soft
failures increase with application/system size and running time)
energy efficiencies > 20× today’s capabilities

further ahead, alternative / extreme parallel computing paradigms
may emerge:

molecular computing (including DNA computing): long times for
individual simulations (hours), but size (p) is no problem!
quantum computing: search exponential (2n) spaces in constant time
using n qubits
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Hybrid OpenMP/MPI, Outlook and Reflection

Outlook: Distributed Memory Prog. Models

domain-specific languages offer abstraction over underlying parallel
system

e.g. the Physis stencil framework
a declarative, portable, global-view DSL targeting C/Cuda(+MPI)
can apply parallization and various GPU-specific optimizations
automatically
in future, may be able to apply MPI optimizations also

will a programming language/model deliver the silver bullet? (or even
cover devices & cores seamlessly?)

for large-scale systems, scalability, reliability and tolerance to
performance variability are the key concerns

PGAS and task-DAG programming models can deal with distributed
memory, both within and across (network-connected) chips
may need hierarchical notions of locality (places)
both can deal with 2nd & 3rd issues
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Hybrid OpenMP/MPI, Outlook and Reflection

Review of the Message Passing Paradigm

has synchronous, blocking and non-blocking semantics; what is the
difference?
distribution schemes are basically fixed (need to find start offsets and
length of the local portion of the data, using the process id)
messages can also be used for synchronization
message passing programs can run within a shared memory domain
(node or socket); how (e.g. on Raijin)?
Possible advantages:

better separation of the hardware-shared memory (e.g. NUMA) – can
be faster
cache coherency no longer required!

should this be the default programming paradigm? (e.g. Intel SCC)

Kumar et al, The Case For Message Passing On Many-Core Chips:
or, the shared memory programming model considered difficult

timing-related issues more prevalent: e.g. data-races, especially with
relaxed memory consistency
no safety / composability / modularity
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Hybrid OpenMP/MPI, Outlook and Reflection

Review of the Message Passing Paradigm (II)

for large-scale systems, distributed memory hardware is still essential
the network topology and routing strategies have a large impact on
performance
some notion of locality is needed for acceptable performance
system level support is non-trivial, with high memory overheads for
message buffers
size of system itself may require fault-tolerance to be considered

message-passing is a highly ubiquitous parallel programming paradigm
it can be made efficient, in the best case, with reasonable programming
effort
in the worst case, dynamically varying and irregular date structures
(e.g. Barnes-Hut oct-trees) can be very difficult!
we must explicitly understand communication patterns and know
collective algorithms
we have a highly sophisticated middleware (MPI) to support it
has well-defined strategies which support large classes of problems
it can be combined with the shared memory paradigm with relative ease
(reflecting the hierarchic hardware organization of large-scale systems)
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Hybrid OpenMP/MPI, Outlook and Reflection

Summary

Topics covered today:

parallel I/O in Lustre filesystems

system support for message passing (OpenMPI case study)

hybrid OpenMP / MPI parallelism

outlook for large scale message passing systems and paradigm

review
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Hybrid OpenMP/MPI, Outlook and Reflection

Hands-on Exercise: Hybrid OMP/MPI Stencil
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