
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Shoaib Akram
Lecturer, School of Computing, (Jan 2020 –)
Ph.D., 2019
Teaching: Computer Microarchitecure (semester 2)
Interests: Hardware/software interaction and performance analysis

It is an interesting time to learn and research about computer
systems. Traditional semiconductor laws are breaking down. But the
society needs more compute power and storage capacity: Big Data,
AI/ML, communication needs, among others.

My current focus is on enabling fast access to large amounts of
information (data) using emerging memory and storage devices.

Logistics
Course webpage: https://comp.anu.edu.au/courses/engn2219/
Lectures (on the website)

§ Lecture slides
§ Lecture videos (I will do my own recording)
§ Weekly problem sets (for your practice only, Not Graded)
§ Key Ideas and summary

Policies (will be up shortly)
§ General conduct, assignment groups/submissions, support,

management, grading
Resources

§ Frequently asked questions
§ Writing design documents
§ Stuff needed to finish the assignments

https://comp.anu.edu.au/courses/engn2219/

Piazza
I will use Piazza for all communication

§ If you ignore Piazza, you will miss key announcements
§ Drop-in sessions, make-up lectures, problems, exercises,

corrections, lecture timing (ENGN2218 conflict)
§ Ask questions on Piazza first (most likely you will receive a

response quickly)
§ Post solutions to weekly problems, ask your classmates if

you are on the right track
§ Ask private questions on Piazza to instructors
§ Students are added/dropped automatically

Tutorials/Labs
Labs are a critical component of this course (one every week)
Handout will be posted on the website “Labs” before each lab
First six labs

§ In each lab, you will finish a sub-component of design assignment 1
§ If you finish the first six labs, you will finish ~50% of the first assignment
§ We only mark the week 2 – 3 labs to make sure you are making

progress and to give you feedback (due Monday 6 pm week 4)
§ Week 3 lab accounts towards 5 points (out of 100) for assignment 1

Week 7 lab (after the teaching break)
§ Test your design project

Week 8 – 11 Labs
§ C programming (not really about C, but about learning key computer

systems concepts, more on this later)

Assessments
Two assignments (60%)

§ CPU design assignment (30%)
§ 5% due on 6 pm, Monday of week 4
§ Full assignment due on 12 pm, Monday of week 8

§ Programming assignment (30%)
§ Due date: Monday 6 pm, week 13

Final Exam (40%)
§ I will release problem sets and exercises throughout the

course for preparation
§ Mock-up exams will be available during/after the break

Assignment Submission
Extensions will be granted on a per-request basis

§ Via Email: Shoaib.Akram@anu.edu.au

Assignment submissions are handled via Gitlab
§ You will learn about it in the labs
§ Make a habit of using Git properly
§ Push often, always pull the latest

You can form group of up to two students to work
on the assignment (one submission per group)

Ink/Whiteboard in Lectures
Try to take notes

§ Help you think and most of the time I will do this is
to solve a problem

§ Ink + Wacom (not very stable)

Textbook

§ Freely available online (check Piazza or
course webpage)

§ I will post the chapters/sections on the
Lectures page after the lecture

Kernighan & Ritchie, The C Programming
Language, 2nd Edition
• “ANSI” (old-school) C

Council Bluffs, Iowa data center, Google (115, 000 sq. feet)

Self-flying nano drone
94 milli-watts

Research server for my
students with special
memory & storage
devices

All computer systems, big or small, have a few fundamental
components

§ Microprocessor (processor or central processing unit or
CPU) for doing computation

§ Main memory for storing temporary information and
program data close to the processor

§ Storage devices (e.g., disks or SSDs) for storing long-term or
persistent information

§ I/O devices to communicate with the external environment
§ Sensors
§ Peripherals

Fundamentals are important

Main Memory

Most computer systems can be viewed as below
§ Three key resources: CPU, memory, storage
§ CPU is the heart of a computer system
§ Processor can access memory much faster than storage

Storage

1
da

y

Few years

This Course is about ...
How does the general-purpose processor work? How do modern
processors perform a wide variety of tasks?

How do processors interact with main memory and storage? How
does the memory and storage system work?

The best way to learn how something works is to build one
§ You will build a processor in Digital
§ URL: https://github.com/hneemann/Digital

This Course is also about ...
A computer system is more than just hardware

§ How does hardware and software interact?
§ What should programmers know about hardware?
§ C is a good vehicle for answering the above questions
§ You can talk about hardware resources in high-level terms

but still stay close to the hardware
§ Key learning outcome of this course: How can you shoot

yourself in the foot when writing C programs?
§ Remember: It’s not about C or Java or Python. It’s about

gaining a deep insight into computer systems!

A 5-Step Recipe for Failure
Stay out of the loop

§ Do not check Piazza
§ Do not ask questions
§ Do not care what is going on in lectures

Do not attempt end of week problem sets
§ Okay, not every week

Do not come to labs OR do not read/attempt the lab handouts
§ And start the assignment on your own the weekend before

due date (no way!)
Do not seek help from tutors
Do not communicate your problems to me!

And do not learn to use Gitlab

Apple M1 Chip
Billions of transistors
All working in parallel

How do engineers manage complexity?
§ Look at components from a higher level
§ Get into detail if necessary

No human (programmer) can track
10 billion elements. Computer systems
work because of abstraction!

Transformation Hierarchy
§ We think of problems in English

§ Sort students by their UIDs
§ The actual work is done by electrons

§ Do electrons speak English?
§ How do we make the electrons do the work?

§ We use a systematic transformation hierarchy to
transform the problem in English into electron
movement

§ This transformation hierarchy is driven by our
need to abstract away complexity

Problem

Algorithm

Program

Architecture

micro-arch

circuits

devices

Definitions
Abstraction: Hiding details to view the system from a high level

Deconstruction: Going from abstraction back to its component parts (breaking abstraction)

High-level language: Programming languages that are at distance higher than the
architecture. They are machine-independent. E.g., C, Java, Python, Rust, Ruby, Go

Low-level language: Languages that are tied to the machine architecture. Each architecture
supports at least one low-level language called assembly.

Instruction Set Architecture: A specification of all the instructions a processor can perform.
Each instruction is an arithmetic (add, sub) or a data movement (fetch from memory)
operation.

Microarchitecture: ISA has no physical significance. Microarchitecture is the physical
implementation of an ISA.

Week 1

Weeks 2 – 3

Week 4

Week 5 – 6

Representing Information
Question: How many different values can each of these
physical variables take?

Frequency of oscillation

Voltage on a wire

Temperature

Answer: Infinite
All these are continuous signals
They contain infinite amount of
information

Representing Information
Digital Systems: Represent information with discrete-valued
variables, i.e., variables with a finite # distinct values

Modern digital systems use a binary (two-valued) representation

0 1 0 1 0 1

Binary Representation
Digital systems internally use “voltages” for representing
binary variables

→ Low voltage means 0
→ High voltage means 1

B I N A Y D I G I T
A bit is a unit of information. A binary variable represents one bit
of information. To represent discrete sets with more than two
elements, we combine multiple bits into a binary code

Binary Codes
Suppose we want to represent four colors: {red, blue, green, black}

§ How many bits of information do I need?
§ (00, 01, 10, 11)
§ The assignment of the 2-bit binary code to colors is ad-hoc
§ Also legitimate is: (10, 11, 00, 01)

How many bits of information do I need to represent the
alphabet set in English?

§ For 26 alphabets, we need 5 bits

Information Content in
a Binary Code

D = 𝐿𝑜𝑔2 𝑁 𝑏𝑖𝑡𝑠
The color set has four states: N = 4, # bits = 2
The alphabet set has 26 states: N = 26, # bits = 5

Conversely,
If D is 2, N = 4
If D is 5, N = 32

Why do computers use binary?

T: Fundamental
Building Block of

Computers

input signal
(voltage level)

output signal
(voltage level)

We can divide a continuous voltage range into ten levels to
represent 0 – 9, but that would make T very complex

The fundamental building block of all computers is a transistor.
A transistor can only distinguish two voltage levels. We call
these voltage levels 1 and 0

The Analytical Engine
Charles Babbage
1834 – 1871

Voltages and Transistors, Why?
Mechanical parts: Not easy to
scale to do large computations

CDC 6600, 1964, $ 2.5 M
Slower than my phone

IBM 360, 1964

Apple M1, 2020
400 mm2

16 billion transistors

2X transistors/chip
every two years

TRUE and FALSE

0 1
F T

False
True

Off
On

True and False are called logical values
§ Logical variable is one that can be 1

or 0 (True or False)
§ Boolean logic defines operations on

logic variables

Our Plan
Presenting information to digital circuits

→ Representing numbers as a string of 1’s and 0’s
→ Number systems: to set a foundation for

efficient manipulation (add and subtract)

Operations on binary variables (1’s and 0’s)
→ Logic gates to perform operations on binary variables

Breaking the digital abstraction (self study)
→ 1’s and 0’s as continuous physical quantities (voltage)

Decimal Number System
§ Base 10 means 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
§ Multiple digits form longer decimal numbers
§ Each column of a decimal number has 10 times the

weight of the previous column

9742 = 9 X 103 + 7 X 102 + 4 X 101 + 2 X 100

two
ones

four
tens

seven
hundreds

nine
thousands

1000’s colum
n

100’s colum
n

10’s colum
n

1’s colum
n

coefficient

power of 10

Range of Decimal Numbers
An N-digit decimal number represents one of 10N

possibilities
§ 0, 1, 2, 3, ..., 10N – 1
§ 3 digits: 1000 possibilities in the range 0 – 999

Binary Numbers
§ Base 2 means 2 digits (0, 1)
§ Multiple bits form longer binary numbers
§ Each column of a binary number has 2 times the

weight of the previous column

1001 = 1 X 23 + 0 X 22 + 0 X 21 + 1 X 20

one
one

zero
two

one
four

one
eight

8’s colum
n

4’s colum
n

2’s colum
n

1’s colum
n

coefficient

power of 2

Range of Binary Numbers
An N-bit binary number represents one of 2N possibilities

§ 0, 1, 2, 3, ..., 2N – 1

§ 3 bits: 8 (= 2 X 2 X 2) possibilities in the range 0 – 7

§ 4 bits: ?

§ 5 bits: ?

§ 10 bits: ?

Powers of 2
Columns # Power of 2 Weight

0 20 1

1 21 2

2 22 4

3 23 8

4 24 16

5 25 32

6 26 64

7 27 128

8 28 256

9 29 512

Columns # Power of 2 Weight

10 210 1024

11 211 2048

12 212 4096

13 213 8192

14 214 16384

15 215 32768

16 216 65536

Kilo

Powers of 2
Power of 2 Decimal Value Abbreviation

210 1024 Kilo (K)

220 1048576 Mega (M)

230 1073741824 Giga (G)

What is 224 in decimal?
§ 220 X 24 = 1 M X 16 = 16 M

What is 217 in decimal?
§ 210 X 27 = 1 K X 128 = 128 K

Terminology
Byte

§ 8 bits
Nibble

§ 4 bits
Word

§ Machine-dependent
§ 8 – 16 bits (gadgets)
§ 32 – 64 bits (high-end)

0 0 0 11 0 0 0
Most Significant Bit

The bit in the highest position

0 0 0 10 0 0
Least Significant Bit

The bit in the lowest position

1

Terminology

0 0 0 10 0 0
Most Significant Byte

The byte in the highest position

0 0 0 10 0 000

0 0 0 10 0 0
Least Significant Byte

The byte in the lowest position

0 0 0 10 0 000

Decimal to Binary Conversion
Method # 1: Find the largest power of 2, subtract, and repeat

Example: Convert 5310 to binary

53 32 X 1

53 – 32 = 21 16 X 1

21 – 16 = 5 4 X 1

5 – 4 = 1 1 X 1

25 24 23 22 21 20

1 1 0 1 0 1

Decimal to Binary Conversion
Method # 2: Repeatedly divide by 2, remainder goes in the
most significant position
Example: Convert 5310 to binary
53/2 = 26 R: 1

26/2 = 13 R: 0

13/2 = 6 R: 1

6/2 = 3 R: 0

3/2 = 1 R: 1

1/2 = 0 R: 1
25 24 23 22 21 20

1 1 0 1 0 1

Hexadecimal Numbers
Motivation: Tedious and error-prone to write long
binary numbers

Hexadecimal or base 16: A group of four bits
represent 24 or 16 possibilities

16 digits: 0 – 9, A, B, C, D, E, F

Column weights: 1, 16, 162 (or 256), 163 (or 4096)

Hexadecimal
Numbers

Hex Digit Decimal Equivalent Binary Equivalent
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Binary to Hexadecimal
Binary 1 1 1 1 0 1 1 1

Hexa F 7

Binary 1 1 1 1 1 1 1 0

Hexa F E

Hexadecimal to Binary
Hexa D 7 4 1

Binary 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1

Binary Addition

1 1
4 2 7 7

+ 5 4 9 9
9 7 7 6

1 1
1 0 1 1

+ 0 0 1 1
1 1 1 0

carries

Decimal
Addition

1 + 1 = 2 (10 in binary), but a binary variable
can either be 0 or 1

§ We record the 1’s digit (0), and carry
the 2’s digit (1) over to the next
column

Binary
Addition

1 + 1 + 1 = 3 (11 in binary), but a binary
variable can either be 0 or 1

§ We record the 1’s digit (1), and carry
the 2’s digit (1) over to the next
column

Overflow
1 1 1
1 1 1 1 15

+ 1 1 1 1 15
1 1 1 1 0 30

§ Suppose we have two 4-bit numbers
§ If A = 1111 and B = 1111
§ What is A + B?
§ What is the largest value 4 bits can

represent?
§ Overflow

§ The result is too big to fit inside the
available bits

§ We check the carry bit out of the most
significant column to detect overflow

Signed Binary Numbers
We need both positive and negative
numbers to solve real-world problems

How do we make a string of 1’s and 0’s
represent both positive and negative
numbers?

If we write all possible combinations of
0’s and 1’s in a disciplined fashion, maybe
we can find a way

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

least significant
bitMost significant

bit

Signed Binary Numbers
Use the most significant bit to represent
the sign: 0 means positive and 1 means
negative

0 0 0 +0
0 0 1 +1
0 1 0 +2
0 1 1 +3
1 0 0 -0
1 0 1 -1
1 1 0 -2
1 1 1 -3

N bit sign/magnitude system: 1 bit for
sign and N-1 bits for magnitude
(absolute)

Decimal

Signed Binary Numbers
What are the drawbacks of sign/magnitude
representation? 0 0 0 +0

0 0 1 +1
0 1 0 +2
0 1 1 +3
1 0 0 -0
1 0 1 -1
1 1 0 -2
1 1 1 -3

Decimal

Ordinary binary addition does not work
for sign/magnitude numbers

§ What is the sum of +3 and -3 and
does the result make sense?

Awkward to have two different representations
of the same number (0)

One’s Complement
Tried in some early computers, Control Data
Corporation (CDC) 6600 0 0 0 +0

0 0 1 +1
0 1 0 +2
0 1 1 +3
1 0 0 -3
1 0 1 -2
1 1 0 -1
1 1 1 -0

Decimal

Negative number: Take the representation of a
positive integer and flip all the bits

Known commonly as 1’s complement
§ Same problems as the

sign/magnitude representation

Two’s Complement
A third system of representation for signed integers for
which

§ Ordinary addition works
§ Single representation for zero

Binary Decimal
A = 0 1 0 1 ?

+ B = ? ? ? ? ?
C = 0 0 0 0 0

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Binary Decimal
A = 0 1 0 1 +5

+ B = ? ? ? ? ?
C = 0 0 0 0 0

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Binary Decimal
A = 0 1 0 1 +5

+ B = ? ? ? ? -5
C = 0 0 0 0 0

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Binary Decimal
A = 0 1 0 1 +5

+ B = 1 0 1 1 -5
C = 0 0 0 0 0

What is the relationship between A and B?

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Binary Decimal
A = 0 1 0 1 +5

+ B = 1 0 1 1 -5
C = 0 0 0 0 0

Some Observations
Observation # 1: If A + B = C, and A is +5, and C is 0, then
B must be -5. (We have found a new representation for
negative numbers.)

Observation # 2: To transform A to B (i.e., +5 to -5), we
need to take 1’s complement of A and then add +1. We
say that B is 2’s complement of A

Observation # 3: Like sign/magnitude numbers, positive
numbers have the MSB set to 0, and negative numbers
have the MSB set to 1

Some Observations
Observation # 4: Ordinary addition works

§ What is the sum of +3 and -3 in two’s complement
system, and does the result make sense?

§ Since ordinary addition works, a circuit to add
numbers can handle both addition and subtraction
§ Recall that, X – A is equivalent to X + (–A)

1
0 1 1 +3

+ 1 0 1 -3
0 0 0

2’s Complement
Circle

More Observations
Observation # 5: There is only one representation for zero

Observation # 6: There is one more negative number than
positive number

§ With 3 bits, this number is 100
§ With 4 bits, this number is 1000
§ This negative number has no positive counterpart
§ It is called the weird number
§ The 2’s complement of the weird number is the

weird number (verify!)

2’s Complement to Decimal
If MSB is 0

§ It is a positive number. The magnitude is
represented by the remaining N-1 bits

If MSB is 1
§ It is a negative number. Take the two’s complement

of the (binary) number. The magnitude (of the
negative number) is represented by the N – 1 bits

Practice and test your understanding using the two’s
complement circle

Overflow in 2’s Complement
1 1

0 1 0 0 1 +9
+ 0 1 0 1 1 +11

1 0 1 0 0 -12

§ Suppose we have two 5-bit numbers
§ A = 01001 and B = 01011
§ What is A + B?
§ What is the largest value 5 bits can

represent in 2’s complement?
§ Overflow

§ The result is too big to fit inside the
available bits

§ Sum of two positive integers cannot
produce a negative integer!

Overflow in 2’s Complement
§ Suppose we have two 5-bit numbers

§ A = 10100 and B = 11010
§ What is A + B?
§ What is the smallest value 5 bits

can represent in 2’s complement?

1 0 1 0 0 -12
+ 1 1 0 1 0 -6

0 1 1 1 0 14
§ Overflow

§ The result is too big to fit inside the
available bits

§ Sum of two negative integers cannot
produce a positive integer!

Overflow in 2’s Complement
Observation # 1: If two number being added have the
same sign bit and the result has the opposite sign bit
(easy!)

Observation # 2: Unlike unsigned numbers, a carry out of
the most significant bit does not indicate overflow

Observation # 3: The sum of a negative number and a
positive number never produces an overflow (prove
yourself!)

Number System Minimum Maximum

Unsigned 0 2N – 1
Sign/Magnitude -2N-1 + 1 2N-1 – 1
Two’s Complement -2N-1 2N-1 – 1

Range of Number Systems

N = 3
Unsigned: 0 to 7
Sign/Magnitude: -3 to 3
2’s Complement: -4 to 3

N = 4
Unsigned: 0 to ?
Sign/Magnitude: -? to ?
2’s Complement: -? to ?

Binary Representation Decimal Value Represented

Unsigned
Signed

Magnitude
1’s

Complement
2’s

Complement

000 0 0 0 0

001 1 1 1 1

010 2 2 2 2

011 3 3 3 3

100 4 -0 -3 -4

101 5 -1 -2 -3

110 6 -2 -1 -2

111 7 -3 -0 -1

Comparing Number Systems

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Unsigned Signed 1’s Comp. 2’s Comp.
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
-0
-1
-2
-3
-4
-5
-6
-7

0
1
2
3
4
5
6
7
-7
-6
-5
-4
-3
-2
-1
-0

0
1
2
3
4
5
6
7
-1
-2
-3
-4
-5
-6
-7
-8

Quiz: See any errors?

Sign Extension
Question: What the difference between the 16-bit and 8-bit
numbers below?

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 116-bit number

0 1 0 14-bit number

Answer: None. They both represent the positive number 5
Leading zeros do not impact the magnitude of a binary number

There are times when it is useful to allocate a small number of
bits to represent a value

Sign Extension
What value to the two numbers below represent?

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 116-bit number (A)

1 1 0 14-bit number (B)

What is the sum of A and B?
§ Scenario # 1: Assume the absence of bits in B to be 0
§ Scenario # 2: Assume the absence of bits in B to be 1

Scenario # 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1+

☓

+13
-3

The assumption that appending 0’s will lead to correct addition
was wrong

Scenario # 2

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1+

✓
The assumption that appending 1’s will lead to correct addition
was right

+13
-3

Sign Extension
Leading 0’s do not change the magnitude of the positive
number

Leading 1’s do not change the magnitude of the negative
number

When a 2’s complement number is extended to more bits, the
sign bit must be copied into the most significant bit positions.
We refer to the operation is Sign-EXTension or SEXT

Boolean Logic
A system of logic for binary variables

§ Helps us reason about the interactions between two
binary variables
§ X is 1 and Y is 0. What is X ∩ Y?

§ Formalizes key (simple) logical operations on binary
variables

§ Logical operations are the steppingstone for composing
sophisticated operations (including arithmetic)

Logic Functions vs Gates
Logic gates are digital circuits that take one or more
inputs and produce a binary output

§ Logic gate is the physical realization of a logical
function
§ The logic AND gate (built with transistors)

implements the logical AND function
§ The inputs are to the left, and the output is to the

right
§ The relationship between inputs and the output is

described by a truth table or a Boolean equation

Truth Table
A convenient way to describe the behavior of logical functions

§ Suppose A and B are input operands and Y is the output
§ A can be 0 or 1
§ B can be 0 or 1
§ A total of four combinations (rows)
§ Three columns (2 inputs and an output)

A B Y
0 0 0
0 1 0
1 0 0
1 1 0

For the contrived example on the right, the
Boolean equation for Y is, Y = 0

§ The values of A and B does not matter

Truth Table with More Inputs
A B C Y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Boolean Equation for output Y: Y = 1
Note: Soon we will see more interesting
logic functions than Y = 0 and Y = 1

The AND Function
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB
Y = A.B
Y= A∩B

AND Function: The output Y is 1 if and only if both A and B are 1

Truth Table AND Logic Gate Boolean Equation

(product)
(intersection)

The OR Function
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

AND Function: The output Y is 1 if either A or B are 1

Truth Table OR Logic Gate Boolean Equation

Y = A + B
Y = A ∪ B

(sum)
(union)

The XOR Function
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

AND Function: The output Y is 1 if A or B, but not both, are 1

Truth Table XOR Logic Gate Boolean Equation

Y= A ⊕ B

eXclusive-OR

