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Plan: Week 2
Week 1: Digital abstraction and binary digits

Week 2: Number systems for binary variables, Logic gates

This Week: Boolean logic & Logic gates (contd)

This Week: Combinational logic (more than just gates) 



We are here



The AND Function
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB
Y = A.B
Y= A∩B

AND Function:  The output Y is 1 if and only if both A and B are 1

Truth Table AND Logic Gate Boolean Equation

(product)
(intersection)



The OR Function
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

AND Function:  The output Y is 1 if either A or B are 1

Truth Table OR Logic Gate Boolean Equation

Y = A + B
Y = A ∪ B

(sum)
(union)



The XOR Function
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

AND Function:  The output Y is 1 if A or B, but not both, are 1

Truth Table XOR Logic Gate Boolean Equation

Y= A ⊕ B

eXclusive-OR



Terminology
The term exclusive is used because the output is 1 if only one 
of the inputs is 1

The OR function, on the other hand, produces an output 1, if 
only one of the two sources is a 1, or both sources are 1
(think of it as inclusive OR)



The NOT Unary Function
A Y
0 1
0 1
1 0
1 0

NOT Function:  The output Y is the inverse of the input A
The NOT gate is also known as an inverter

Truth Table NOT Logic Gate Boolean Equation

Y = A’
Y = A

The NOT gate has only one input (unary)

–

bubble à invert

Read as
Y = NOT A



Inverting a Gate’s Operation
Any gate can be followed by a bubble to invert its operation

NOT AND à NAND

NOT OR à NOR

NOT XOR à XNOR

NOT NOT à BUF



In Boolean logic, two 
wrongs make a right!

We say that two bubbles cancel each other’s effect

leads to



The NAND Function
A B Y
0 0 1
0 1 1
1 0 1
1 1 0

Y = (AB)’

NAND Function:  The output Y is 1 unless both inputs are 1

Truth Table NAND Logic Gate Boolean Equation



The NOR Function
A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Y = (A + B)’

NOR Function:  The output Y is 1 if neither A nor B is 1

Truth Table NOR Logic Gate Boolean Equation



The XNOR Function
A B Y
0 0 1
0 1 0
1 0 0
1 1 1

Y = (A ⊕ B)’

XNOR Function:  The output Y is 1 if both A and B are 1 or both are 0

Truth Table XNOR Logic Gate Boolean Equation



XOR and XNOR are special
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

XOR

XOR: Output is 1 when inputs are 
not equal (odd number of 1’s)

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

XNOR

XNOR: Output is 1 when inputs are 
equal (even number of 1’s)
Equality GateParity Gate



Buffer (BUF)

Y = A

Buffer:  The output Y is equal to the input A 

Truth Table BUF Logic Gate

A Y
0 0
0 0
1 1
1 1

Boolean Equation



Buffer (BUF)
§ At the logic level, BUF is no more useful than a wire
§ At a lower level of abstraction (analog level)

§ BUF can deliver a large amount of current to a 
motor 

§ It can send output to many gates (think of an 
amplifier)

Critical to consider multiple layer of abstraction in the 
compute stack to understand the significance of various 
elements



Multiple-Input Gates
A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Looking at the truth table, can you guess 
the 3-input gate?

Y = ABC

Gates with multiple inputs are possible



Multiple-Input Gates
A B C Y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Y = (A + B + C)’

Looking at the truth table, can you guess 
the 3-input gate?

Gates with multiple inputs are possible



Bitwise Operations
All logical operators can be applied to two bit-patterns (i.e., a 
group of bits) of m bits each, where m is any # bits (8, 16, ...)

§ Apply the operation individually to each pair of bits
§ If A and B are 8-bit input sources (or source operands), 

then their AND or product, C, is also 8 bits 

A
B
C 0 0 0 0 1 1 0 1

C = AB (bit-wise AND)
0 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1

A
B
C 0 0 0 0 1 1 0 1

C = A + B (bit-wise OR)
0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0



Bit Masks

A
B
C 0 0 0 0 1 1 0 1

C = AB (bit-wise AND)
0 1 1 0 1 1 0 1
0 0 0 0 1 1 1 1

Suppose we are interested in extracting the least significant four 
bits from A, while ignoring the right-most four bits 

§ If we AND A with B, and choose B as 00001111, then we 
get the desired bit pattern in C

§ Bit mask:  A binary pattern (B) that separates the bits of A
into two halves, the half we care about, and the half we 
wish to ignore



Exercises
Suppose we have a bit pattern, A = 11000010, and the rightmost 
two bits are of particular significance.  Find a bitmask and a 
logical operation to mask out the values in the rightmost 
positions in a new bit pattern C.  (All other bits in C are set to 0.)

Suppose we have a bit pattern, A = 10110010, and the leftmost 
two bits are of particular significance.  Find a bitmask and a 
logical operation to mask out the values in the leftmost 
positions in a new bit pattern C. (All other bits in C are set to 1.)



Exercise
Suppose we want to know if two bit-patterns A and B are 
identical.  How can we find out if two bit-patterns are identical?

Verify that, B AND 1 = B, where B is a binary variable.   Also, 
verify that, B OR 0 = B.

Verify that, B AND 0 = 0, where B is a binary variable.   Also, 
verify that, B OR 1 = 1.



Exercise
Verify that, B AND B = B, where B is a binary variable.   Also, 
verify that, B OR B = B.

Verify that, B AND B’ = 0, where B is a binary variable.   Also, 
verify that, B OR B’ = 1.



Key Ideas
Any physical quantity can represent TRUE (1) and FALSE (0).    Computers use voltage 
levels for representing one and zero as electronic components such as transistors can 
distinguish between these two voltage levels.    Our ability to shrink transistors has 
enabled faster computers in a small chip area (400 mm2 approx.).

Voltage is a continuous physical signal.    We can split voltage into as many levels as 
we want.    We use only two levels to represent and manipulate binary variables to 
simplify circuits. 

Using binary variables and Boolean logic to build computers leads to more efficient 
circuits and computers.

We can do arithmetic in any other base (e.g., 2) without learning Boolean and digital 
logic.    There is nothing special about adding binary numbers compared to adding 
decimal numbers. 



We need Boolean logic to understand the interaction between binary variables, and 
understanding the interaction requires us to learn about logic functions.    Logic 
functions can eventually lead us to build more complex digital circuits that solve real-
world problems, e.g., adding two large numbers.

We (humans and, more specifically, John von Neumann) found a system of 
representation for binary numbers called two's complement.    This representation 
simplifies building arithmetic circuits as a single circuit for adding two numbers can 
handle addition and subtraction.  The circuit itself does not know about two's 
complement.  We build circuits and computers today, assuming two's complement 
signed integers.

Key Ideas



Classification of Digital Circuits
Combinational Circuit:  Output depends on the current values 
of the inputs only 

§ Memoryless (a distinct and critical feature)
§ All logic gates are combinational

Sequential Circuit:  Output depends on the current and previous 
values of the inputs

§ The sequence of inputs dictate the output
§ Sequential circuits have state or memory
§ Example: Elevator controller (State: TRANSIT, GROUND, TOP)



Example:  Suppose a combinational circuit, consisting of an 
AND gate, with two inputs, A and B

time à t0 t1 t2 t2 t4 t5 t6
A 0 1 1 0 1 0 1
B 0 1 0 0 1 0 1

Output 0 1 0 0 1 0 1

At time t6, the sequence of changes to A and B between 
t0 – t5 is irrelevant.   The output is strictly determined by 
the values of A and B at t6

Combinational Behavior



Combinational Circuits

Functional Spec
Timing Spec

Functional specification:  What is the circuit supposed to do? 
What is the output for a given combination of input values?

Timing specification:  How long does the circuit takes to 
produce the output? 

§ Worst-case:  ten nanoseconds
§ Best-case: one nanoseconds

inputs outputs



Combinational Circuits

Hierarchy:  The top-level circuit, CL, is made up for of two sub-
circuits (also combinational), CL1 and CL2

Nodes:  n1 is an internal wire or node

inputs outputsCL1 CL2

n1

CL

Abstraction:  The input and output interface, and the 
functional and timing specification is enough for someone to 
use CL.  They do not need to know the inner composition of CL



Steps in implementing combinational Logic

1. Initial specification (e.g., in English)

2. Construct the truth table

3. Derive the Boolean equation

4. Simplify the Boolean equation (use Boolean algebra)

5. Implement the equation using logic gates

Implementing Combinational 
Logic

Functional 
specification



[Happiness detector] The students are back on campus.  They are not 
happy if there is a homework deadline, or Badger & Co. is closed.  Design 
a circuit that will output 1 only if students are happy.  

[Multiplexer] Design a circuit with three inputs: D0, D1, select; and one 
output. The output is D0 if select is 0, and D1 if select is 1.  

[Half Adder] Design a circuit that adds two binary variables: A and B.  
The circuit has two outputs:  sum and carry-out (Cout).  

Specification

[Full Adder] Design a circuit that adds three binary variables: A, B, and a 
carry-in (Cin). The circuit has two outputs:  sum and carry-out (Cout).  



Constructing Truth Tables
Identify inputs and outputs (interface)

§ The inputs and outputs maybe implicitly specified 
§ Or, determining them may require some thought

Write all the possible combinations of input values
§ For each input combination, determine the output
§ All inputs to the left, outputs to the right



Truth Table: Happiness Detector

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Specification:  The students are back on campus.  They are not happy if 
there is a homework deadline, or Badger & Co. is closed.  Design a circuit 
that will output 1 only if students are happy.  

Interface
Homework deadline? (D)  

§ 0:  there is not a deadline
§ 1:  there is a deadline

Badger is closed? (B)  
§ 0:  open
§ 1:  closed

Happy (H): 1 àJ, 0 àL

Truth Table



Deriving a Boolean Equation

§ For any binary variable X, its compliment is X’
§ True form (X) and complementary form (X’) are called literals
§ AND of one or more literals is called a product or implicant

§ X, Y, XY, X’Y’Z, XYZ, XY’Z’ are all implicants for a function of 
three variables

§ Minterm: A product involving all the inputs to the function
§ XYZ is a minterm for a function of three variables X, Y, and Z
§ XY is not a minterm because it is missing one literal (Z)

Some Terminology first



Deriving a Boolean Equation
Order of operations
§ NOT has the highest precedence 
§ Next is AND
§ OR is last
§ Example: Y = A + BC’

§ First, we find C’
§ Then, we find BC’ (product/AND)
§ Finally, we perform A + (the result of BC’)



Sum-of-Products Form

A B Y1 minterm name
0 0 0 A’B’ m0

0 1 1 A’B m1

1 0 0 AB’ m2

1 1 0 AB m3

To write the Boolean equation for a truth table, sum each of 
the minterms for which the output is 1

Y1 = A’B

Y1 is 1 only when A = 0 and B = 1

Conversely, when A’ = 1 and B = 1

Boolean Eq



Sum-of-Products Form

A B Y1 minterm name
0 0 0 A’B’ m0

0 1 1 A’B m1

1 0 0 AB’ m2

1 1 1 AB m3

To write the Boolean equation for a truth table, sum each of 
the minterms for which the output is 1

Y1 = A’B + AB

Y1 is 1 either when A = 0 and B = 1

OR, when A = 1 and B = 1

Y1 = ∑ 1,3

Boolean Eq



Equation: Happiness Detector
Specification:  The students are back on campus.  They are not happy if 
there is a homework deadline, or Badger & Co. is closed.  Design a circuit 
that will output 1 only if students are happy.  

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq

H = (D)’ AND (B)’



From Equation to Gates
Schematic:  A diagram of a digital circuits with elements (gates) and the 
wires that connect them together

Y = AB’ + B’C’
Example Boolean Eq

Schematic
1. Inputs are on the left (or top) side
2. Outputs are on the right
3. Gates flow from left to right
4. Use straight wires
5. Wires connect at a T junction
6. A dot where wires cross indicates a 

connection



Rules for Connecting Wires



Schematic: Happiness Detector
Specification:  The students are back on campus.  They are not happy if 
there is a homework deadline, or Badger & Co. is closed.  Design a circuit 
that will output 1 only if students are happy.  

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H



Specification:  The students are back on campus.  They are not happy if 
there is a homework deadline, or Badger & Co. is closed.  Design a circuit 
that will output 1 only if students are happy.  

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

Which (monolithic) gate 
is this?  

Schematic: Happiness Detector



Specification:  The students are back on campus.  They are not happy if 
there is a homework deadline, or Badger & Co. is closed.  Design a circuit 
that will output 1 only if students are happy.  

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

D
B H

Which (monolithic) gate 
is this?  Answer: NOR gate

Schematic: Happiness Detector



Multiplexer: T. Table + Eq 
Specification:  Design a circuit with three inputs: 
D0, D1, select (S); and one output (Y). The output 
is D0 if select is 0, and D1 if select is 1. 

S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

Y = S’D1’D0  +  S’D1D0  + SD1D0’ + SD1D0
Y = S’D0 (D1’ + D1)  +  SD1 (D0’ + D0)

=1 =1
Y = S’D0 (1)  +  SD1 (1)
Y = S’D0 +  SD1



Multiplexer: Gate-Level Schematic
Specification:  Design a circuit with three inputs: 
D0, D1, select (S); and one output (Y). The output 
is D0 if select is 0, and D1 if select is 1. 

S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Y = S’D0 +  SD1 Gate-Level Schematic



Half Adder

A B Cout S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Specification: Design a circuit that adds two binary variables: A and B.  
The circuit has two outputs:  sum and carry-out (Cout).  

Truth Table Boolean Eq Schematic

S = A’B + AB’
S = A ⊕ B

Cout = AB



Full Adder: T. Table + Eq 
Specification: Design a circuit that adds two 
binary variables: A and B.  The circuit has two 
outputs:  sum and carry-out (Cout).  

Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = Cin’A’B + Cin’AB’ + CinA’B’ + CinAB
Cout = Cin’AB + CinA’B + CinAB’ + CinAB

S = A ⊕ B ⊕ Cin

Cout = Cin(A ⊕ B) + AB

Simplification via Boolean algebra



Full Adder: Schematic
Specification: Design a circuit that adds two 
binary variables: A and B.  The circuit has two 
outputs:  sum and carry-out (Cout).  

Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = A ⊕ B ⊕ Cin

Cout = Cin(A ⊕ B) + AB
Half Adder Half Adder



Full Adder = Two Half Adders
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Half Adder Half Adder

AND2AND1

What is AND1 doing?
§ Computes the carry out from A + B (call it S1)

What is AND2 doing?
§ Computes the carry out from S1 + Cin

What is the OR gate doing?
§ Cout is 1 if either the output of AND1 is 1 or 

the output of AND2 is 1
§ What does the truth table reveal about Cout?

S1

OR


