
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Plan: Week 2
Week 1: Digital abstraction and binary digits

Week 2: Number systems for binary variables, Logic gates

This Week: Boolean logic & Logic gates (contd)

This Week: Combinational logic (more than just gates)

We are here

The AND Function
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB
Y = A.B
Y= A∩B

AND Function: The output Y is 1 if and only if both A and B are 1

Truth Table AND Logic Gate Boolean Equation

(product)
(intersection)

The OR Function
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

AND Function: The output Y is 1 if either A or B are 1

Truth Table OR Logic Gate Boolean Equation

Y = A + B
Y = A ∪ B

(sum)
(union)

The XOR Function
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

AND Function: The output Y is 1 if A or B, but not both, are 1

Truth Table XOR Logic Gate Boolean Equation

Y= A ⊕ B

eXclusive-OR

Terminology
The term exclusive is used because the output is 1 if only one
of the inputs is 1

The OR function, on the other hand, produces an output 1, if
only one of the two sources is a 1, or both sources are 1
(think of it as inclusive OR)

The NOT Unary Function
A Y
0 1
0 1
1 0
1 0

NOT Function: The output Y is the inverse of the input A
The NOT gate is also known as an inverter

Truth Table NOT Logic Gate Boolean Equation

Y = A’
Y = A

The NOT gate has only one input (unary)

–

bubble à invert

Read as
Y = NOT A

Inverting a Gate’s Operation
Any gate can be followed by a bubble to invert its operation

NOT AND à NAND

NOT OR à NOR

NOT XOR à XNOR

NOT NOT à BUF

In Boolean logic, two
wrongs make a right!

We say that two bubbles cancel each other’s effect

leads to

The NAND Function
A B Y
0 0 1
0 1 1
1 0 1
1 1 0

Y = (AB)’

NAND Function: The output Y is 1 unless both inputs are 1

Truth Table NAND Logic Gate Boolean Equation

The NOR Function
A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Y = (A + B)’

NOR Function: The output Y is 1 if neither A nor B is 1

Truth Table NOR Logic Gate Boolean Equation

The XNOR Function
A B Y
0 0 1
0 1 0
1 0 0
1 1 1

Y = (A ⊕ B)’

XNOR Function: The output Y is 1 if both A and B are 1 or both are 0

Truth Table XNOR Logic Gate Boolean Equation

XOR and XNOR are special
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

XOR

XOR: Output is 1 when inputs are
not equal (odd number of 1’s)

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

XNOR

XNOR: Output is 1 when inputs are
equal (even number of 1’s)
Equality GateParity Gate

Buffer (BUF)

Y = A

Buffer: The output Y is equal to the input A

Truth Table BUF Logic Gate

A Y
0 0
0 0
1 1
1 1

Boolean Equation

Buffer (BUF)
§ At the logic level, BUF is no more useful than a wire
§ At a lower level of abstraction (analog level)

§ BUF can deliver a large amount of current to a
motor

§ It can send output to many gates (think of an
amplifier)

Critical to consider multiple layer of abstraction in the
compute stack to understand the significance of various
elements

Multiple-Input Gates
A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Looking at the truth table, can you guess
the 3-input gate?

Y = ABC

Gates with multiple inputs are possible

Multiple-Input Gates
A B C Y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Y = (A + B + C)’

Looking at the truth table, can you guess
the 3-input gate?

Gates with multiple inputs are possible

Bitwise Operations
All logical operators can be applied to two bit-patterns (i.e., a
group of bits) of m bits each, where m is any # bits (8, 16, ...)

§ Apply the operation individually to each pair of bits
§ If A and B are 8-bit input sources (or source operands),

then their AND or product, C, is also 8 bits

A
B
C 0 0 0 0 1 1 0 1

C = AB (bit-wise AND)
0 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1

A
B
C 0 0 0 0 1 1 0 1

C = A + B (bit-wise OR)
0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0

Bit Masks

A
B
C 0 0 0 0 1 1 0 1

C = AB (bit-wise AND)
0 1 1 0 1 1 0 1
0 0 0 0 1 1 1 1

Suppose we are interested in extracting the least significant four
bits from A, while ignoring the right-most four bits

§ If we AND A with B, and choose B as 00001111, then we
get the desired bit pattern in C

§ Bit mask: A binary pattern (B) that separates the bits of A
into two halves, the half we care about, and the half we
wish to ignore

Exercises
Suppose we have a bit pattern, A = 11000010, and the rightmost
two bits are of particular significance. Find a bitmask and a
logical operation to mask out the values in the rightmost
positions in a new bit pattern C. (All other bits in C are set to 0.)

Suppose we have a bit pattern, A = 10110010, and the leftmost
two bits are of particular significance. Find a bitmask and a
logical operation to mask out the values in the leftmost
positions in a new bit pattern C. (All other bits in C are set to 1.)

Exercise
Suppose we want to know if two bit-patterns A and B are
identical. How can we find out if two bit-patterns are identical?

Verify that, B AND 1 = B, where B is a binary variable. Also,
verify that, B OR 0 = B.

Verify that, B AND 0 = 0, where B is a binary variable. Also,
verify that, B OR 1 = 1.

Exercise
Verify that, B AND B = B, where B is a binary variable. Also,
verify that, B OR B = B.

Verify that, B AND B’ = 0, where B is a binary variable. Also,
verify that, B OR B’ = 1.

Key Ideas
Any physical quantity can represent TRUE (1) and FALSE (0). Computers use voltage
levels for representing one and zero as electronic components such as transistors can
distinguish between these two voltage levels. Our ability to shrink transistors has
enabled faster computers in a small chip area (400 mm2 approx.).

Voltage is a continuous physical signal. We can split voltage into as many levels as
we want. We use only two levels to represent and manipulate binary variables to
simplify circuits.

Using binary variables and Boolean logic to build computers leads to more efficient
circuits and computers.

We can do arithmetic in any other base (e.g., 2) without learning Boolean and digital
logic. There is nothing special about adding binary numbers compared to adding
decimal numbers.

We need Boolean logic to understand the interaction between binary variables, and
understanding the interaction requires us to learn about logic functions. Logic
functions can eventually lead us to build more complex digital circuits that solve real-
world problems, e.g., adding two large numbers.

We (humans and, more specifically, John von Neumann) found a system of
representation for binary numbers called two's complement. This representation
simplifies building arithmetic circuits as a single circuit for adding two numbers can
handle addition and subtraction. The circuit itself does not know about two's
complement. We build circuits and computers today, assuming two's complement
signed integers.

Key Ideas

Classification of Digital Circuits
Combinational Circuit: Output depends on the current values
of the inputs only

§ Memoryless (a distinct and critical feature)
§ All logic gates are combinational

Sequential Circuit: Output depends on the current and previous
values of the inputs

§ The sequence of inputs dictate the output
§ Sequential circuits have state or memory
§ Example: Elevator controller (State: TRANSIT, GROUND, TOP)

Example: Suppose a combinational circuit, consisting of an
AND gate, with two inputs, A and B

time à t0 t1 t2 t2 t4 t5 t6
A 0 1 1 0 1 0 1
B 0 1 0 0 1 0 1

Output 0 1 0 0 1 0 1

At time t6, the sequence of changes to A and B between
t0 – t5 is irrelevant. The output is strictly determined by
the values of A and B at t6

Combinational Behavior

Combinational Circuits

Functional Spec
Timing Spec

Functional specification: What is the circuit supposed to do?
What is the output for a given combination of input values?

Timing specification: How long does the circuit takes to
produce the output?

§ Worst-case: ten nanoseconds
§ Best-case: one nanoseconds

inputs outputs

Combinational Circuits

Hierarchy: The top-level circuit, CL, is made up for of two sub-
circuits (also combinational), CL1 and CL2

Nodes: n1 is an internal wire or node

inputs outputsCL1 CL2

n1

CL

Abstraction: The input and output interface, and the
functional and timing specification is enough for someone to
use CL. They do not need to know the inner composition of CL

Steps in implementing combinational Logic

1. Initial specification (e.g., in English)

2. Construct the truth table

3. Derive the Boolean equation

4. Simplify the Boolean equation (use Boolean algebra)

5. Implement the equation using logic gates

Implementing Combinational
Logic

Functional
specification

[Happiness detector] The students are back on campus. They are not
happy if there is a homework deadline, or Badger & Co. is closed. Design
a circuit that will output 1 only if students are happy.

[Multiplexer] Design a circuit with three inputs: D0, D1, select; and one
output. The output is D0 if select is 0, and D1 if select is 1.

[Half Adder] Design a circuit that adds two binary variables: A and B.
The circuit has two outputs: sum and carry-out (Cout).

Specification

[Full Adder] Design a circuit that adds three binary variables: A, B, and a
carry-in (Cin). The circuit has two outputs: sum and carry-out (Cout).

Constructing Truth Tables
Identify inputs and outputs (interface)

§ The inputs and outputs maybe implicitly specified
§ Or, determining them may require some thought

Write all the possible combinations of input values
§ For each input combination, determine the output
§ All inputs to the left, outputs to the right

Truth Table: Happiness Detector

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Specification: The students are back on campus. They are not happy if
there is a homework deadline, or Badger & Co. is closed. Design a circuit
that will output 1 only if students are happy.

Interface
Homework deadline? (D)

§ 0: there is not a deadline
§ 1: there is a deadline

Badger is closed? (B)
§ 0: open
§ 1: closed

Happy (H): 1 àJ, 0 àL

Truth Table

Deriving a Boolean Equation

§ For any binary variable X, its compliment is X’
§ True form (X) and complementary form (X’) are called literals
§ AND of one or more literals is called a product or implicant

§ X, Y, XY, X’Y’Z, XYZ, XY’Z’ are all implicants for a function of
three variables

§ Minterm: A product involving all the inputs to the function
§ XYZ is a minterm for a function of three variables X, Y, and Z
§ XY is not a minterm because it is missing one literal (Z)

Some Terminology first

Deriving a Boolean Equation
Order of operations
§ NOT has the highest precedence
§ Next is AND
§ OR is last
§ Example: Y = A + BC’

§ First, we find C’
§ Then, we find BC’ (product/AND)
§ Finally, we perform A + (the result of BC’)

Sum-of-Products Form

A B Y1 minterm name
0 0 0 A’B’ m0

0 1 1 A’B m1

1 0 0 AB’ m2

1 1 0 AB m3

To write the Boolean equation for a truth table, sum each of
the minterms for which the output is 1

Y1 = A’B

Y1 is 1 only when A = 0 and B = 1

Conversely, when A’ = 1 and B = 1

Boolean Eq

Sum-of-Products Form

A B Y1 minterm name
0 0 0 A’B’ m0

0 1 1 A’B m1

1 0 0 AB’ m2

1 1 1 AB m3

To write the Boolean equation for a truth table, sum each of
the minterms for which the output is 1

Y1 = A’B + AB

Y1 is 1 either when A = 0 and B = 1

OR, when A = 1 and B = 1

Y1 = ∑ 1,3

Boolean Eq

Equation: Happiness Detector
Specification: The students are back on campus. They are not happy if
there is a homework deadline, or Badger & Co. is closed. Design a circuit
that will output 1 only if students are happy.

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq

H = (D)’ AND (B)’

From Equation to Gates
Schematic: A diagram of a digital circuits with elements (gates) and the
wires that connect them together

Y = AB’ + B’C’
Example Boolean Eq

Schematic
1. Inputs are on the left (or top) side
2. Outputs are on the right
3. Gates flow from left to right
4. Use straight wires
5. Wires connect at a T junction
6. A dot where wires cross indicates a

connection

Rules for Connecting Wires

Schematic: Happiness Detector
Specification: The students are back on campus. They are not happy if
there is a homework deadline, or Badger & Co. is closed. Design a circuit
that will output 1 only if students are happy.

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

Specification: The students are back on campus. They are not happy if
there is a homework deadline, or Badger & Co. is closed. Design a circuit
that will output 1 only if students are happy.

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

Which (monolithic) gate
is this?

Schematic: Happiness Detector

Specification: The students are back on campus. They are not happy if
there is a homework deadline, or Badger & Co. is closed. Design a circuit
that will output 1 only if students are happy.

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

D
B H

Which (monolithic) gate
is this? Answer: NOR gate

Schematic: Happiness Detector

Multiplexer: T. Table + Eq
Specification: Design a circuit with three inputs:
D0, D1, select (S); and one output (Y). The output
is D0 if select is 0, and D1 if select is 1.

S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

Y = S’D1’D0 + S’D1D0 + SD1D0’ + SD1D0
Y = S’D0 (D1’ + D1) + SD1 (D0’ + D0)

=1 =1
Y = S’D0 (1) + SD1 (1)
Y = S’D0 + SD1

Multiplexer: Gate-Level Schematic
Specification: Design a circuit with three inputs:
D0, D1, select (S); and one output (Y). The output
is D0 if select is 0, and D1 if select is 1.

S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Y = S’D0 + SD1 Gate-Level Schematic

Half Adder

A B Cout S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Specification: Design a circuit that adds two binary variables: A and B.
The circuit has two outputs: sum and carry-out (Cout).

Truth Table Boolean Eq Schematic

S = A’B + AB’
S = A ⊕ B

Cout = AB

Full Adder: T. Table + Eq
Specification: Design a circuit that adds two
binary variables: A and B. The circuit has two
outputs: sum and carry-out (Cout).

Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = Cin’A’B + Cin’AB’ + CinA’B’ + CinAB
Cout = Cin’AB + CinA’B + CinAB’ + CinAB

S = A ⊕ B ⊕ Cin

Cout = Cin(A ⊕ B) + AB

Simplification via Boolean algebra

Full Adder: Schematic
Specification: Design a circuit that adds two
binary variables: A and B. The circuit has two
outputs: sum and carry-out (Cout).

Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = A ⊕ B ⊕ Cin

Cout = Cin(A ⊕ B) + AB
Half Adder Half Adder

Full Adder = Two Half Adders
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Half Adder Half Adder

AND2AND1

What is AND1 doing?
§ Computes the carry out from A + B (call it S1)

What is AND2 doing?
§ Computes the carry out from S1 + Cin

What is the OR gate doing?
§ Cout is 1 if either the output of AND1 is 1 or

the output of AND2 is 1
§ What does the truth table reveal about Cout?

S1

OR

