
CPU Architecture

ASD Shared Memory HPC Workshop

June 2023

School of Computing

Australian National University

Canberra, Australia

Outline

Introduction

Performance Measurement and Modeling

Example Applications

Hardware Performance Counters

High Performance Microprocessors

Loop Optimization: Software Pipelining

2

Schedule - Day 1 - CPU Architecture

3

https://comp.anu.edu.au/courses/sharedMemHPC/cpuArchitecture

Schedule - Day 2 - Vectorization and Cache

4

https://comp.anu.edu.au/courses/sharedMemHPC/vectorizationCache

Schedule - Day 3 - Multiprocessor Parallelism

5

https://comp.anu.edu.au/courses/sharedMemHPC/multiprocessorParallelism

Schedule - Day 4 - Parallel Performance Optimization

6

https://comp.anu.edu.au/courses/sharedMemHPC/parallelPerformance

Schedule - Day 5 - Parallel Software Design

7

https://comp.anu.edu.au/courses/sharedMemHPC/designPatterns

Course Hardware - Specifications

NCI Gadi system - Intel Cascade Lake

• 2 x Intel Xeon Platinum 8274 (24-core) with HyperThreading, 3.2 GHz

• 32 KB 8-way L1 D-Cache, 1MB 16-way L2 D-Cache, 36 MB 11-way L3 Cache

(shared), 64B line

• 196 GB DDR4 RAM

ARM system - Neoverse

• 32 Neoverse N1 cores, 2.6GHz (AWS Graviton2 instances: 16 vCPUs)

• 64 KB 4-way L1 D-Cache, 512 KB 8-way L2 Cache, 4 MB 16-way L3 Cache (shared)

• 32 GB RAM

More details @ https://en.wikichip.org/wiki/intel/microarchitectures/cascade lake and

https://en.wikichip.org/wiki/arm holdings/microarchitectures/neoverse n1
8

https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/neoverse_n1

Course Hardware - Logging in

Follow the instructions provided at

https://github.com/ANU-HPC/sharedMemHPC exercises/tree/main/systems.md

9

https://github.com/ANU-HPC/sharedMemHPC_exercises/tree/main/systems.md

Outline

Introduction

Performance Measurement and Modeling

Measuring Time

Performance Modeling

Example Applications

Hardware Performance Counters

High Performance Microprocessors

Loop Optimization: Software Pipelining
10

Measuring Time

• Which time to use: wall time (elapsed time), or process time?

• Reliability issues (typical time slice interval is tS ≈ 0.01s):

time: wall process

timer resolution tR : high ✓ low (= tS) ✗

timer call overhead tC : low ✓ high ✗

effect of time slicing / interrupts: high ✗ lower ✓

appropriate timing interval tI : < 1tS > 100tS
• Error in tI ≤ | ± 2tR + tC | (may be variability in tC ; tI ≤ 2tR + tC safer)

• how to minimize these effects?

• Estimating tR from (differences between) repeated calls to a timer function:
• 16e-06 0 5.0e-6 0 0 0 0 5.0e-6 0 0 0 0 5.0e-6 0 . . . : tR ≈ 5e − 6 (tC ≈ 1e − 06)

• 16e-06 1.0e-6 1.8e-6 8.7e-4 1.3e-06 0.9e-06 . . . : tR ≈ tC ≈ 1e − 6

• 16e-06 1.1e-6 0.9e-6 1.0e-6 0.9e-6 1.1e-6 . . . : tR ≪ tC ≈ 1e − 6

• note: a low tR means a ‘high (degree of) resolution’

11

Scales of Timings

• Whole applications

• Critical ‘inner loops’

• how to identify these?

• Time for basic operations, eg. +, ∗
• multiples of clock cycle

• Machine cycle time

• 1GHz clock equivalent to 1nsec

• note: cycle time is not always fixed!

12

Total Program Timing

C, Korn and Bourne shell provide the time and timex utility

me@gadi > time ./ myprogram # This is under bash

real0m0 .906s

user0m0 .191s

sys0m0 .688s

me@gadi > \time ./ myprogram # actual comamand , e.g. /bin/time

0.17 user 0.64 system 0:00.83 elapsed 97% CPU (0 avgtext +0 avgdata 728 maxresident)k 0

inputs +0 outputs (0 major +212 minor)pagefaults 0swaps

me@gadi > \time -f "u=%Us s=%Ss e=%Es mem=%Mkb" ./ cputime # customize output

u=0.20s s=0.76s e=0:00.98 es mem =732kb

• For parallel programs on multi-CPU machines, user time can exceed elapsed time

• High system time may indicate memory paging and/or I/O

• Ratio of user+system time to elapsed time can reflect other logged-in users

• we can customize output as indicated above
13

Manual Timing: Functions

#include <stdio.h>

2 #include <sys/time.h>

#include <sys/times.h>

4 #include <time.h>

#include <unistd.h>

6 int main(int argc , char **argv) {

struct tms cpu;

8 struct timeval tp1 , tp2;

struct timezone tzp;

10 gettimeofday (&tp1 , NULL);

long tick = sysconf(_SC_CLK_TCK);

12 sleep (1);

printf(" Ticks per second %ld \n", tick);

14 gettimeofday (&tp2 , NULL);

times(&cpu);

16 printf(" User ticks %d \n", cpu.tms_utime);

printf(" System ticks %d \n", cpu.tms_stime);

18 printf(" Elapsed secs %d usec %d \n", tp2.tv_sec - tp1.tv_sec ,

tp2.tv_usec - tp1.tv_usec);

20 }

14

Manual Timing: Issues

• Resolution (and overhead): You should have some idea of its value

• In some cases it may not be what is reported in a man page, e.g. it may say

microseconds (1e-6) but are all the digits meaningful?

• Often the resolution of the CPU timer is relatively low - one hundredth of a second is

common

• CPU Time: Take care with the meaning of CPU time. Some timing functions switch

from CPU to elapsed time if the program is running in parallel

• Baseline: Timing provides a baseline from which to judge performance tuning or

comparative machine performance

• Placement: How do we know where to place timing calls!

• Unix provides a number of profiling tools to help with this, e.g. prof, oprofile, etc

• Other commercial offerings include VTune, Windows Performance Analysis Toolkit etc.

15

Performance Modeling

• Accurate performance models are needed to understand / predict performance

• Given a problem size n, typically the execution time is t(n) = O(n2)

• challenge generally in large n, not in complexity of t(n)

• often (e.g. vector operations) t(n) = a0 + a1n; the values of a0, a1 are important!
i.e. O(t(n)) (tight upper bound), Ω(t(n)) (lower), Θ(t(n)) (upper+lower) concepts are inadequate

• A useful measure is the execution rate:

R(n) =
g(n)

t(n)

where g(n) is the algorithm’s ‘operation count’, g(n) = Θ(t(n))

• e.g. graph of R(n) = n
10+n

• note: if g(n) = cn, a0 = the startup cost, c/a1 = R(∞) = the asymptotic rate

• startup costs can be large, especially on vector computers

• can use regression to determine a0, a1 by measuring t(0), t(1000), . . .

16

Amdahl’s Law #1

• The bane of parallel (||) HPC?
• Given a fraction f of ‘slow’ computation, at rate Rs, and Rf being the ‘fast’

computation rate:

R = (
f

Rs
+

1− f

Rf
)−1

• Interpreted for vector processing:

• f is the fraction of unvectorizable computation, with Rf (Rs) being the vector unit

(scalar unit) speed

• Interpreted for parallel execution with p processors:

• f is the fraction of serial computation, with Rf = pRs, i.e.:

Rp = (f +
1− f

p
)−1Rs

17

Amdahl’s Law #2: Speedup

18

Amdahl’s Law #3: Speedup Curves

”Better to have two strong oxen pulling your plough across the country than a thousand

chickens. Chickens are OK, but we can’t make them work together yet”
19

Amdahl’s Law #4

• Other useful measures:
• Speedup: Sp = t1

tp

t1 for the fastest serial algorithm, tp is || execution time

• Efficiency: Ep =
Sp

p

ideally Ep = 1; is Ep > 1 possible?

• Consequences:
• for a given fixed f , there will be a limit to p that can be usefully applied, eg. p ≤ 1

f

• this set back || computing 15 years!

• Counter notion: scalability
• for a large p, only makes sense to use large n, ie. n = n1p

• typically f (n) = c ′/n, hence:

R(n) = R(n1p) = (c′

n1p
+ 1−c′/(n1 p)

p)−1Rs ≈ p
c′/n1+1Rs

• ie. R(p) can increase linearly with p under these conditions

⇒ || processing can be worthwhile!

20

Hands-on Exercise: Timing and Computational Scaling

Objective:

• Check that your accounts are working

• Run some timing experiments to determine resolution and overhead

21

https://github.com/ANU-HPC/sharedMemHPC_exercises/tree/main/day1_architecture/session1_timing

Outline

Introduction

Performance Measurement and Modeling

Example Applications

Matrix Multiplication

Heat-Stencil

Hardware Performance Counters

High Performance Microprocessors

Loop Optimization: Software Pipelining
22

Case Study: Matrix Multiplication

If A is a n x m matrix and B is a m x p matrix, their product C is a n x p matrix

A =


A11 A12 · · · A1m

A21 A22 · · · A2m

.

.

.

.

.

.
. . .

.

.

.

An1 An2 · · · Anm

 B =


B11 B12 · · · B1p

B21 B22 · · · B2p

.

.

.

.

.

.
. . .

.

.

.

Bm1 Bm2 · · · Bmp



C =


(AB)11 (AB)12 · · · (AB)1p
(AB)21 (AB)22 · · · (AB)2p

.

.

.

.

.

.
. . .

.

.

.

(AB)n1 (AB)n2 · · · (AB)np



where each entry Cij is given by multiplying the entries Aik (across row i of A) by the entries Bkj

(down column j of B), for k = 1, 2, ...,m, and summing the results over k:

Cij = (AB)ij =
∑m

k=1 AikBkj

Source: https://en.wikipedia.org/wiki/Matrix multiplication
23

https://en.wikipedia.org/wiki/Matrix_multiplication

Case Study: Heat-Stencil

• Stencil codes are iterative kernels which update array

elements based on neighbouring values

• Two-dimensional heat diffusion is modelled by the

Heat Equation

∂u(t,−→x)
∂t = α∇2u(t,−→x)

• Example: given a metal plate of size Rx by Ry , where

temperature at edges is held at Tedge , determine

temperature at middle of the plate

• The domain is divided into a grid of points. The new temperature for each grid point is

calculated as the average of the current temperatures at the four adjacent grid points i.e.

TNEW (i , j) = TOLD(i−1,j)+TOLD(i+1,j)+TOLD(i,j−1)+TOLD(i,j+1)
4

• Iteration continues until the maximum change in temperature for any grid point is less than

some threshold 24

Outline

Introduction

Performance Measurement and Modeling

Example Applications

Hardware Performance Counters

PAPI

High Performance Microprocessors

Loop Optimization: Software Pipelining
25

Why Measure?

• Modern machines are complex, including:

• pipelining

• superscalar

• load/store architectures

• memory hierarchy

• Understanding observed performance is not easy

• Performance counters count critical events and provide an accurate means of

assessing how well the computer system is being used

26

Hardware Performance Counters

• (Nearly?) All modern microprocessors have them

• Typically a group of registers that keep track of programmable events

• Provide high resolution data on many performance related variables, e.g.

• cycles

• instruction count

• floating point operations

• cache references

• TLB misses

• data/instruction stalls

• Enable vendors to better understand the performance of existing code on their

hardware

• Enable users to build better (faster) software

27

Accessing Hardware Counters

• Cray YMP provided HPM that gave info on vector lengths and flops

• enabled users to quote macho flops!

• Used to build metrics

• Used in system wide tools (e.g.: perf, gprof, tau, cputrack, cpustat etc.)

• Accessed via libraries

• vendor specific (libcpc, libpctx, perflib)

• portable (PCL, PAPI)

• further GUI often provided for higher level analysis

• There are no standard counters

• different vendors have different counters

• different generations of the same processor may have different counters

28

Simple Metrics

MFLOPS =
FP Instr Exec

Cycles
× clock(MHz)

MIPS =
Int Instr Exec

Cycles
× clock(MHz)

IPC =
All Instr Exec

Cycles

L1Hits = 1− L1 Misses

Loads + Stores

L2Hits = 1− L2 Misses

L1 Misses

Branch rate =
Decoded Branches

Total Instruction Exec 29

More Complex Metrics

L1− L2 bandwidth =
L1 Misses × L1 Line Size

Cycles
× clock(MHz)

L2− RAM bandwidth =
L2 Misses × L2 Line Size

Cycles
× clock(MHz)

Data Stall =
Load Use + Load Use Raw + Store Buf Full

Cycles

30

Intel Xeon (Sandy Bridge) HW Counters

• 11 hardware Performance Monitoring Units (48-bit wide)

• 3 Fixed-function counters (FIXED CTR0-FIXED CTR2)

• Each of these can count only one event

• 8 General-purpose counters (PMC0-PMC7)

• Each counter paired with a performance event select register PERFEVTSELx

• Configure performance events via UMASK (unit mask) and the EVENT SELECT fields

in the PERFEVTSELx

• i7 family is similar; 12 counters in total for Cascade Lake

Details for specific Intel processors at https://download.01.org/perfmon/index/

31

https://download.01.org/perfmon/index/

ARM Cortex-A8 Performance Counters

• 4 Performance Monitor CouNT Registers (PMCNT0-PMCNT3)

• 32 bit counter

• Each of PMCNT0-PMCNT3 registers selected by the PMNXSEL Register

• Event to be counted selected by the EVTSEL Register

• Performance Monitor Control (PMNC) Register controls the operation of the four

Performance Monitor Count Registers

ARM64 Neoverse counters are also 32-bit but have 6 PMEVCNT registers, each

controlled by a corresponding PMEVTYPE register

32

PAPI (https://icl.utk.edu/papi/)

• Portable library which provides a programming interface for the performance counter

hardware

• Runs on most modern processors and operating systems

• IBM POWER / AIX / Linux

• Intel Pentium, Core2, Nehalem, SandyBridge, Cascade Lake / Linux

• ARM Cortex, ARM64

• Countable events are defined in two ways:

• Platform-neutral preset events (papiStdEventDefs.h): cache and branch events,

cycle and instruction counts, functional units, pipeline status

• Platform-dependent native events

• Presets can be derived from multiple native events

33

https://icl.utk.edu/papi//

What PAPI provides

• Tools which provide information on hardware counters. e.g.

• papi avail

• papi cost

• papi mem info

• High Level interface

• Functions for coarse-grained measurements

• Low Level interface

• Fine-grained measurements

• Increased functionality

34

papi cost

computes the cost of basic PAPI operations:

gadi:~$ papi_cost

Total cost for loop latency over 1000000 iterations
min cycles : 18
max cycles : 43812
mean cycles : 28.638972
std deviation: 91.725368

Performing start/stop test ...

Total cost for PAPI_start/stop (2 counters) over 1000000 iterations
min cycles : 6200
max cycles : 308616
mean cycles : 7274.749000
std deviation: 1153.335188

Performing read test ...

Total cost for PAPI_read (2 counters) over 1000000 iterations
min cycles : 78
max cycles : 44684
mean cycles : 87.388440
std deviation: 148.663895

... 35

papi avail

reports processor info and available present events:

gadi:~$ papi_avail
Available PAPI preset and user defined events plus hardware information.

PAPI version : 5.7.0.0
Operating system : Linux 4.18.0 -80.11.2. el8_0.x86_64
Vendor string and code : GenuineIntel (1, 0x1)
Model string and code : Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90 GHz (85, 0

x55)
CPU revision : 7.000000
CPUID : Family/Model/Stepping 6/85/7 , 0x06/0x55/0x07
CPU Max MHz : 3900
CPU Min MHz : 1200
Total cores : 48
SMT threads per core : 1
Cores per socket : 24
Sockets : 2
Cores per NUMA region : 12
NUMA regions : 4
Running in a VM : no
Number Hardware Counters : 10
Max Multiplex Counters : 384
PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes Yes Level 2 data cache misses
PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction cache misses
...

36

papi native avail

reports available native events:

nc02202 :~$ papi_native_avail

...

===

Native Events in Component: perf_event

===

| ix86arch :: UNHALTED_CORE_CYCLES |

| count core clock cycles whenever the clock signal on the specific |

| core is running (not halted) |

| :e=0 |

| edge level (may require counter -mask >= 1) |

|

--

| ix86arch :: INSTRUCTION_RETIRED |

| count the number of instructions at retirement. For instructions t|

| hat consists of multiple micro -ops , this event counts the retireme|

| nt of the last micro -op of the instruction |

...

37

PAPI High Level Interface

• Meant for application programmers wanting coarse-grained measurements

• Calls the lower level API

• Allows only PAPI preset events

• Easier to use and less setup (less additional code) than low-level

• Supports 8 calls in C or Fortran:

PAPI_start_counters PAPI_stop_counters

PAPI_read_counters PAPI_accum_counters

PAPI_num_counters PAPI_flips

PAPI_ipc PAPI_flops

38

PAPI High Level Interface Example

1 #include "papi.h"

#define NUM_EVENTS 2

3
long_long values[NUM_EVENTS];

5 unsigned int Events[NUM_EVENTS]={ PAPI_TOT_INS ,PAPI_TOT_CYC };

7 /* Start the counters */

PAPI_start_counters ((int*)Events ,NUM_EVENTS);

9
/* The workload to be monitored */

11 do_work ();

13 /* Stop counters and store results in values */

retval = PAPI_stop_counters(values ,NUM_EVENTS);

39

PAPI Low Level Interface

• Increased efficiency and functionality over the high level PAPI interface

• Obtain information about the executable, the hardware, and the memory

environment

• Manages hardware events in user-defined groups called Event Sets.

• Allows both PAPI preset and native events unlike the High Level interface

• Multiplexing, Callbacks on counter overflow

• About 60 functions

40

PAPI Low Level Interface Example

#include "papi.h"

2 #define NUM_EVENTS 2

int Events[NUM_EVENTS]={ PAPI_FP_INS ,PAPI_TOT_CYC };

4 int EventSet;

long_long values[NUM_EVENTS];

6
/* Initialize the library */

8 retval = PAPI_library_init(PAPI_VER_CURRENT);

/* Allocate space for the new eventset and do setup */

10 retval = PAPI_create_eventset (& EventSet);

/* Add FLOPs and total cycles to the eventset */

12 retval = PAPI_add_events(EventSet , Events , NUM_EVENTS);

/* Start the counters */

14 retval = PAPI_start(EventSet);

16 /* The workload to be monitored */

do_work ();

18
/* Stop counters and store results in values */

20 retval = PAPI_stop(EventSet , values);

41

Hardware Performance Counters: Caveats

• Non-determinism due to hardware interrupts or external sources (e.g. OS

interaction, program layout)

• Overcounting due to exceptions, microcode, context switching

V.M. Weaver, D. Terpstra, S. Moore (2013). Non-Determinism and Overcount on Modern Hardware Performance Counter Implementations. ISPASS 2013

42

https://doi.org/10.1109/ISPASS.2013.6557172

Hands-on Exercise: Hardware Performance Counters

Objective:

• Using PAPI to measure code performance

43

https://github.com/ANU-HPC/sharedMemHPC_exercises/tree/main/day1_architecture/session2_counters

Outline

Introduction

Performance Measurement and Modeling

Example Applications

Hardware Performance Counters

High Performance Microprocessors

Loop Optimization: Software Pipelining

44

Instruction Set Architectures

• Early microprocessors were very simple, but in 1964 IBM introduced the 360 series

which was micro-programmed

• From then instruction sets and addressing modes increased, prompted in part by

development of high level languages

• Special microcode was added to handle case statements, procedure calling, array
indexing etc

• led to the CISC concept (Complex Instruction Set Computer)

• In the 70s writing, debugging and maintaining microcode became a major issue

• Academics begin to analyse what programs actually did and this resulted in a major
rethink of microprocessor design

• led to the RISC concept (Reduced Instruction Set Computer)

45

Characteristics of RISC and CISC Machines

RISC CISC

1 Simple instructions taking 1 cycle Complex instructions taking multiple cycles

2 Only LOADS/STORES reference

memory

Any instruction may reference memory

3 Highly pipelined Not pipelined or less pipelined

4 Instructions executed by the hardware Instructions interpreted by the microcode

5 Fixed format instructions Variable format instructions

6 Few instructions and modes Many instructions and modes

7 Complexity is in the compiler Complexity is in the micro-program

8 Multiple register sets Single register set

Assembly language programmers used the complicated machine instructions, but compilers generally did

not. Difficult to get compiler to recognize complicated instructions.

RISC is now the dominant scalar processor architecture

46

RISC Processors

First Generation Characteristics

• Pipelining (both instruction and floating point)

• Branching (delayed branching and branch prediction)

• Uniform instruction length

• Load/Store architecture (simple addressing)

Second Generation

• Faster clocks

• Super-pipelining

• Superscalar

Post-RISC

• Out-of-order execution
47

Pipelining

Everything happens in step with the clock. Overlap instructions so that more than one

can be in progress at any time. RISC architectures can initiate an instruction each cycle,

but previous instructions may not have completed.

• Break instr’n execution into k stages; ⇒ can get ≤ k-way ||ism
(generally, the circuitry for each stage is independent)

• e.g. (k = 5): stages FI = Fetch Instrn., DI = Decode Instrn., FO = Fetch Operand, EX = Execute Instrn., WB = Write Back

(branch): FI DI FO EX WB

(delay slot:) FI DI FO EX WB

(guess) FI DI FO EX WB

(guess) FI DI FO EX WB

(sure) FI DI FO EX WB

• note: the FO & WB stages may involve memory accesses (and may possibly stall the pipeline)

48

Pipelining: Dependent Instructions

CPU must ensure result is the same as if no pipelining (or ||ism)

• Instructions requiring only 1 cycle in the EX stage:

add %1, -1, %1 ! r1 = r1 - 1 (integer register subtract)

cmp %1, 0 ! is r1 = 0? (integer register compare)

can be solved by pipeline feedback from EX stage to next cycle

• (important) Instr’ns requiring c > 1 cycles for the EX stage (e.g. f.p. * +, load, store) are normally

implemented by having c EX stages, delaying dependent instr’n by c cycles e.g. c = 3

fmuld %f0 , %f2, %f4 ! I0: fr4 = fr0 * fr2 (f.p. register multiply)

.... ! I1:

.... ! I2:

faddd %f4 , %f6, %f6 ! I3: fr6 = fr4 + fr6 (f.p. register add)

I0: FI DI FO EX1 EX2 EX3 WB

I1: FI DI FO EX1 EX2 EX3 WB

I2: FI DI FO EX1 EX2 EX3 WB

I3: FI DI FO EX1 EX2 EX3 WB 49

Pipelining: Dependent Instructions(cont)

Notes:

• If I3 is δ < c cycles after I0, the CPU must insert c − δ pipeline bubbles (NoOps) in

between.

Can avoid this by software pipelining: (where possible) separate I3 from I0 in the

original code by at least c cycles

• EX2, EX3 may be ‘empty’ for the simpler instructions (e.g. int +)

• Less important instrn.’s requiring larger c (e.g. f.p. /, int ∗, /, %) are either not

pipelined or use a separate sub-pipeline for their EX stages

50

Pipelining: Branch Instructions

A branch to a new program address (perhaps caused by an if statement) will disrupt the pipeline flow.

The processor doesn’t know if the instruction is a branch until the decode stage and then may not know if

it will be taken until the execute stage. If the branch is taken then following ”in flight” instructions must

be annulled.

• Many processors require a ’branch delay slot’ instruction immediately after the branch instruction.

This enables the pipeline to continue for unconditional branches (ie when the decoded instructions

says branch somewhere and we go there). Conditional branches are more difficult, pipeline will stall

and require flushing as it can’t be recognized before the DI stage

e.g.

cmp %1, %2 ! n = n + 1

bne endif1 ! if (i == k) ...

add %3,1,%3 ! delay slot - ALWAYS executed

(if possible try to move a logically preceding instr’n into the delay slot)

51

Pipelining: Branch Prediction

• To handle conditional branches various branch prediction schemes are used:

• Assume branches are always taken (flush pipeline when not taken) (OK for loops, with test at

bottom)

• S/W (compiler) indicates the ‘most likely’ prediction

• H/W keeps a branch prediction buffer: predict using the result of the last (few)

executions of the branch (2 bit common)

52

Pipelines and Floating-Point Operations: Summary

• FP operations typically take longer than fixed point operations so benefit greatly
from pipelining.

• The number of stages in the pipeline may be increased so even complicated operations

like FP * can be pipelined.

• FP +, -, *, comparison and conversion are pipelined

• Usually sqrt and / are NOT pipelined

• Some processors limit overlap of FP operations due to shared internal components

• Fully pipelined ⇒ no overlap restrictions

53

Load/Store Architecture

• Memory reference are restricted to load/store

• Only one reference per instruction

• In CISC, arithmetic/logical instructions may include a memory reference

• Motivation:

• To enable fixed instruction length

• To ease pipelining

• Since memory references may be slow

54

Second Generation RISC Processors

After proving basic concept

• Improvement in manufacturing led to faster clock rates

• Increase pipeline stages making each stage simpler and faster

• Add multiple compute elements: Superscalar

55

Superscalar (multiple instruction issue)

A small number (w) of instructions are scheduled by the H/W to execute together

• Groups must have an appropriate ‘instruction mix’

eg. UltraSPARC (w = 4):


≤ 2 different floating point

≤ 1 load / store ; ≤ 1 branch

≤ 2 integer / logical

 instructions per

group

• Have ≤ w -way ||ism over different types of instructions
• Generally requires:

• Multiple (≥ w) instruction fetches

• Extra grouping (G) stage in the pipeline

• Problem: will require a deeper software pipelining (by a factor of w)
• Generally, all problems with pipelining are similarly amplified

• Issues: the instruction mix must be balanced for maximum performance!
• NB. floating point ∗, + must be balanced

56

Post-RISC Architecture

• Two-way superscalar successful and in 1994 able to run at 1.6-1.8 instructions per

cycle

• ”Higher-way” superscalar may appear natural progression, but difficult to find

enough instruction level parallelism to justify

• Speculative execution or out-of-order execution is more popular. Permits instructions

to be executed that may never be used, e.g. in the following FDIV may be elevated

up the execution stack if sufficient space is present to store the result

LD R10 ,R2(r0) Load into R10 from memory

.

. many instructions of various kinds but no FDIV

.

FDIV R4,R5,R6 R4 = R5 /R6

• Out-of-order processors include a instruction reorder buffer to store instructions that

are in limbo
57

In-order vs. Out-of-order Execution

• In-order instruction execution

• Instructions are fetched, executed & completed in compiler-generated order

• One stalls, they all stall

• Instructions are statically scheduled

• Out-of-order instruction execution

• Instructions are fetched in compiler-generated order

• Instruction completion may be in-order (today) or out-of-order (older computers)

• In-between, they may be executed in some other order

• Independent instructions behind a stalled instruction can pass it

• Instructions are dynamically scheduled

58

Dynamic Scheduling

Out-of-order processors:

• After instruction decode

• Check for structural hazards

• An instruction can be issued when a functional unit is available

• An instruction stalls if no appropriate functional unit

• Check for data hazards

• An instruction can execute when its operands have been calculated or loaded from

memory

• An instruction stalls if its operands are not available

59

Summary

• RISC is now the dominant architecture type

• Modern x86 processors mix elements of CISC and RISC

• Typical pipelines are 5-15 stages and instructions are 3-4 way superscalar

• Can only achieve up to inherent parallelism in instruction stream

• Dependent instructions must be sufficiently separated by either:

1. S/W (need good compilers & large # registers)

2. H/W (if done via dynamic instruction reordering, this is more effective, but harder to achieve!)

60

Hands-on Exercise: Pipelining

Objective:

• to interpret assembly language and understand dependencies between instructions

61

https://github.com/ANU-HPC/sharedMemHPC_exercises/tree/main/day1_architecture/session3_pipelining

Outline

Introduction

Performance Measurement and Modeling

Example Applications

Hardware Performance Counters

High Performance Microprocessors

Loop Optimization: Software Pipelining

62

Loop Unrolling and Software Pipelining#1

• Consider the loop

for (i = 0; i < N; i++) {

y[i] = y[i] + a * x[i]

}

• Running on a system with:

• Load/store latency of 2 cycles to L1 cache

• fmul/fadd latency of 3 cycles (EX stages)

• Superscalar with 1 ld/st, 2 FP, 2 Int ops

• How many cycles to execute 1 loop iteration?

63

Loop Unrolling and Software Pipelining#2

! Instruction Groups

for (i = 0; i < N; i++) { | for(i=0;i<N;i++){ ! Issue Completes

y[i] = y[i] + a * x[i]; | x0 = x[i] ! [1] ld(x0) // repeat [10]

} | y0 = y[i] ! [2] ld(y0) ..st(y0)

| x0 = x0 * a ! [3] fmul(x0,a) ld(x0)

| ! [4] - ld(y0)

| ! [5] -

| y0 = y0 + x0 ! [6] fadd(x0,y0) fmul(x0,a)

| ! [7] -

| ! [8] -

| y[i] = y0 ! [9] st(y0),blt(i,n) fadd(x0,y0)

| }

• Loop takes 9 cycles to complete 1 iteration

• In 4 cycles no instructions are issued!

• Only once do we use the superscalar capabilities (st(y0),blt(i,n))

64

Loop Unrolling and Software Pipelining#3

• What if we ”unroll” the loop by a factor of 2?

for (i = 0; i < N%2; i++){ ! preconditioning loop

y[i] = y[i] + a * x[i];

}

for (i = N%2; i < N; i+=2){

y[i] = y[i] + a * x[i];

y[i+1] = y[i+1] + a * x[i+1];

}

• Reduces loop overhead

• Exposes more possibilities for instruction ||ism
• We can software pipeline the operations

65

Loop Unrolling and Software Pipelining#4

! Instruction Groups

for (i = N%2; i < N; i+=2) { ! Issue Completes

x0 = x[i]; ! [1] ld(x0) ..st(y0)// Repeat [11]

x1 = x[i+1]; ! [2] ld(x1) ..st(y1)

y0 = y[i]; x0 = x0 * a; ! [3] ld(y0),fmul(x0 ,a) ld(x0)

y1 = y[i+1]; x1 = x1 * a; ! [4] ld(y1),fmul(x1,a) ld(x1)

! [5] - ld(y0)

y0 = y0 + x0; ! [6] fadd(x0,y0) ld(y1),fmul(x0,a)

y1 = y1 + x1; ! [7] fadd(x1,y1) fmul(x1,a)

! [8] -

! [9] st(y0) fadd(x0,y0)

} ! [10] st(y1),blt(i,n) fadd(x1,y1)

• Now obtain 2 results every 10 cycles, or effectively 1 result every 5 cycles

• Further unrolling will give 1 result every 3 cycles, i.e.

• ultimately the loop is load/store dominated.

• Note: poor instruction mix at the start of the loop

66

Loop Unrolling and Software Pipelining#5

• Greater unrolling also permits better hiding of L2 cache load/store latencies (e.g.

delay of 8 cycles instead of 2!)

• With moderate levels of optimization (e.g. -O3), compilers generally unroll inner

loops automatically. But you may need to look at the assembler code to see exactly

what is done.

• In general unrolling is inadvisable when loop:

• has a low trip count: ie. N is small

• because extra setup is needed

• body is already fat ⇒ register spilling

• generally, the unrolling should match (the register level of) the memory hierarchy

• has (unavoidable) procedure calls

✗ note: unrolling increases code size

67

Dependencies and Aliasing#1

• Pointer aliasing

void vadd(int n, double a[], double b[]) {

int k;

for (k = 0; k < n; k++) {

a[k] = a[k] + b[k];

}

}

• Consider:

• vadd(n, &a[0], &a[0]); // a[i] = a[i] + a[i]

• vadd(n, &a[0], &a[1]); // a[i] = a[i] + a[i+1]

• vadd(n, &a[1], &a[0]); // a[i+1] = a[i+1] + a[i]

• vadd(n, &a[0], &a[n]); // a[i] = a[i] + a[i+n]

68

Dependencies and Aliasing#2

• What if loop unrolling causes load of data for iteration i+1 to occur before store of

data iteration i.

Iter i Iter i+1 Iter i+2

ld a[i], r1

ld b[i], r2

fadd r1, r2, r3

ld a[i+1], r4

ld b[i+1], r5

st r3 , a[i], fadd r4, r5 , r6

ld a[i+2], r7

ld b[i+2], r8

st r6 , a[i+1] fadd r7, r8, r9

• This will give the wrong result for a[i+1] = a[i+1]+a[i]

• By default C/C++ assumes pointers can be aliased. This limits pipelining, so
moderate compiler optimization removes this restriction . . .

• with the potential of wrong results! 69

Loops with Inter-Iteration Dependencies: Reductions

• Hard to extract any instruction parallelism at all!

• e.g. ‘scan’ an array:

y[1] = 0.0

for(i = 2; i < N; i++) {

y[i+1] = y[i] + x[i];

}

• Reductions: special case of scan algorithm: inter-iteration dependencies are over a

scalar variable

• e.g. inner product of 2 vectors

s = 0.0; | s = 0.0;

for (i = 0; i < N; i++) { | for (i=0;i<N;i++) { ! Cycle

s = s + x[i] * y[i]; | x0 = x[i] ! [1] // repeat [10]

} | y0 = y[i] ! [2]

| x0 = x0 * y0 ! [4] wait ld(y0)

| s = s + x0 ! [7] wait mult(x0,y0)

| ! wait add(s,x0)

| }

• 9 cycles for 1 iteration

70

Loop with Inter-Iteration Dependencies: Reductions#2

• Unrolling inner product by 2:

...

for (i = N%2; i < N; i+=2) { ! Cycle

x0 = x[i] ! [1] // repeat [13]

x1 = x[i+1] ! [2] //add(s,x1) completes

y0 = y[i] ! [3]

y1 = y[i+1] ! [4]

x0 = x0 * y0 ! [5]

x1 = x1 * y1 ! [6]

s = s + x0 ! [8] wait mult(x0 ,y0)

s = s + x1 ! [11] wait add(s,x0)

! wait add(s,x1)

} ! loop book -keeping overlaps

• 12 cycles for 2 results (compared to 9 cycles for 1 iteration)
• How can performance be further improved?

• Change order at start of loop

• Remove dependencies of += op’ns
71

Loop with Inter-Iteration Dependencies: Reductions#3

s1=0; s2=0;

for(i = N%2; i < N; i+=2){ ! Cycle

x0 = x[i] ! [1] // repeat [10] wait mult(x0 ,y0)

y0 = y[i] ! [2] <<NEW order

x1 = x[i+1] ! [3]

y1 = y[i+1]; x0 = x0 * y0 ! [4] <<OVERLAP

x1 = x1 * y1 ! [5]

s1 = s1 + x0 ! [7] wait mult(x0,y0)

s2 = s2 + x1 ! [8] wait mult(x1,y1)

} ! loop book -keeping overlaps

s = s1 + s2

• 9 cycles for 2 results (cf. 12 cycles for 2 results)

72

Hands-on Exercise: Loop Ordering and Unrolling

Objective:

• To investigate the effect of loop ordering and loop unrolling on performance

• To see compiler generated loop unrolling in the assembly code and to understand

what is meant by aliasing and its implications

73

https://github.com/ANU-HPC/sharedMemHPC_exercises/tree/main/day1_architecture/session4_loops

Summary

Topics covered today - CPU Architecture:

• Performance measurement and modeling

• Hardware performance counters

• Key features of modern processors

• Loop optimization

Tomorrow - Vectorization & Cache Organization!

74

	Introduction
	Performance Measurement and Modeling
	Measuring Time
	Performance Modeling

	Example Applications
	Matrix Multiplication
	Heat-Stencil

	Hardware Performance Counters
	PAPI

	High Performance Microprocessors
	Loop Optimization: Software Pipelining

