Lambda Calculus

Lambda Calculus

Nicholas Miehlbradt

October 28, 2022



Lambda Calculus

Syntax

Lambda calculus is recursively defined.

E:=x
= M.E
=EFEE

Here x can be any name and Es on the right hand side can be
replaced by any sub expression constructed using the same rules.



Lambda Calculus

Binding

Without brackets, these are the binding rules:

Ax.fab=(Ax.f ab)

abc=(ab)c

If we want to express something different, we use brackets.



Lambda Calculus

Free variables

A variable is free if it is not bound by a lambda e.g.

x is bound: Ax.x
y is free: Ax.y

Ax.y (Ay.z y x)



Lambda Calculus

a-Conversion

What letter we use after our As doesn't matter e.g.

AX.X

AY-y
are the same function (they do the same thing)
We can change the name of a variable after a A as long as we

change all places where it would be substituted. This is called
a-conversion.



Lambda Calculus

[-Reduction

Whenever we have an expression of the form:
(A.E)F

We can replace it with E where we replace all occurences of x in E
with F e.g.

(AxAy.x y) (Az.z)
—=Ay.(A\z.z) y



Lambda Calculus

Representing Data

How can we use this to represent data?



Lambda Calculus

Booleans

True := Ax.\y.x
False := Ax.\y.y



Lambda Calculus

Numbers

This method of representing numbers is called Church numerals.

0:= M. Ax.x

1:= M. x.fx

2:= M. x.f (f x)
3:= A Ax.f (f (f x))



