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Lambda Calculus

Syntax

Lambda calculus is recursively defined.

E:=x
= M.E
=EFEE

Here x can be any name and Es on the right hand side can be
replaced by any sub expression constructed using the same rules.
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Binding

Without brackets, these are the binding rules:

Ax.fab=(Ax.f ab)

abc=(ab)c

If we want to express something different, we use brackets.
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Free variables

A variable is free if it is not bound by a lambda e.g.

x is bound: Ax.x
y is free: Ax.y

Ax.y (Ay.z y x)
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a-Conversion

What letter we use after our As doesn't matter e.g.

AX.X

AY-y
are the same function (they do the same thing)
We can change the name of a variable after a A as long as we

change all places where it would be substituted. This is called
a-conversion.



Lambda Calculus

[-Reduction

Whenever we have an expression of the form:
(A.E)F

We can replace it with E where we replace all occurences of x in E
with F e.g.

(AxAy.x y) (Az.z)
—=Ay.(A\z.z) y
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Representing Data

How can we use this to represent data?
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Booleans

True := Ax.\y.x
False := Ax.\y.y



Lambda Calculus

Numbers

This method of representing numbers is called Church numerals.

0:= M. Ax.x

1:= M. x.fx

2:= M. x.f (f x)
3:= A Ax.f (f (f x))



