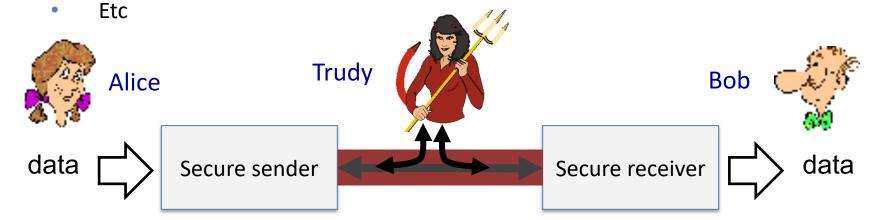
Cryptographic fundamentals, Asymmetric cryptography and Homomorphic encryption

Artem Lenskiy

(Artem.Lenskiy@anu.edu.au)

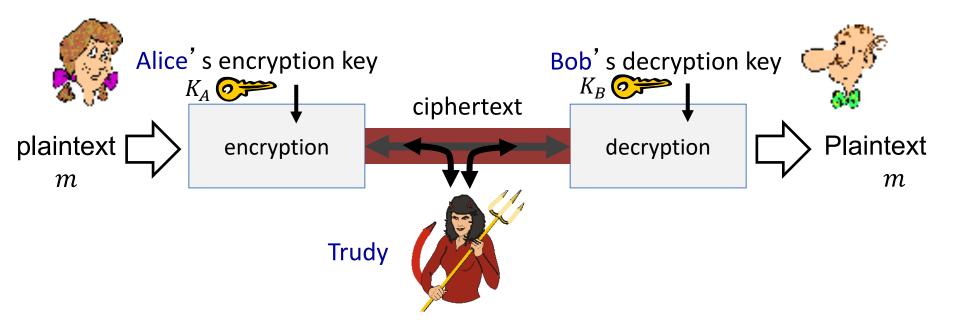
Information security

- ✓ The practice of protecting information by mitigating information risks.
 - Secure storage
 - Secure communication
 - Secure computation



✓ Information security uses *cryptography* to transform usable information into a form that renders it unusable by anyone other than an authorized user (encryption).

The language of cryptography



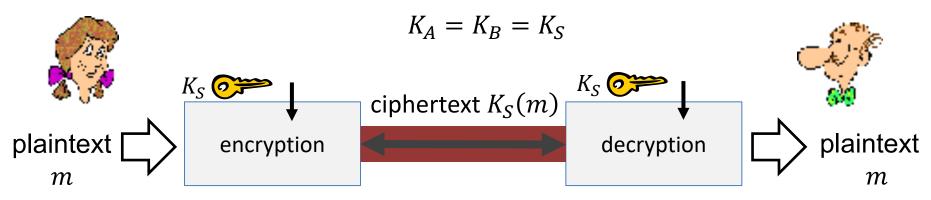
m plaintext message $K_A(m)$ ciphertext, encrypted with key K_A $m = K_B\big(K_A(m)\big)$

Applications of asymmetric cryptography

- ✓ What can go wrong?
 - eavesdrop: intercept messages
 - actively *insert* messages into connection
 - *impersonation:* can fake (spoof) source address in packet (or any field in packet)
 - hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
 - *denial of service*: prevent service from being used by others (e.g., by overloading resources)

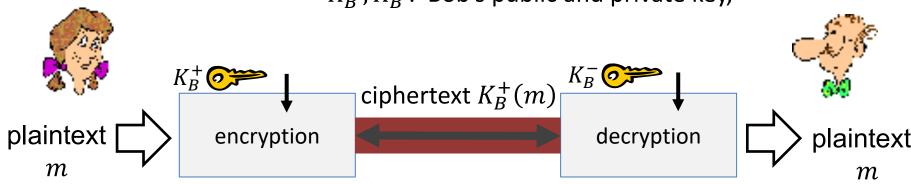
Symmetric and Asymmetric cryptography

✓ Symmetric key crypto: Bob and Alice share same (symmetric) key:



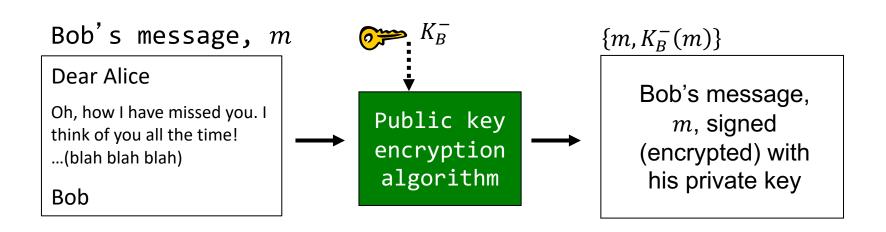
Asymmetric key crypto: K_A^+ , K_A^- : Alice's public and private key,

 K_B^+, K_B^- : Bob's public and private key,



Simple digital signature for message m

- ✓ Goal: sender (Bob) digitally signs document, establishing he is document owner/creator.
- ✓ verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document
- ✓ Bob signs m by encrypting with his private key K_B^- , creating "signed" message, $K_B^-(m)$



Simple digital signature for message m

- ✓ Suppose Alice receives msg m, with signature: $\{m, K_B^-(m)\}$
- Alice verifies m signed by Bob by applying Bob's public key K_B^+ to $K_B^-(m)$ then checks $K_B^+(K_B^-(m)) = m$.
- ✓ If $K_B^+(K_B^-(m)) = m$, whoever signed m must have used Bob's private key.

Result:

- ✓ Alice thus verifies that
 - Bob signed m
 - no one else signed *m*
 - Bob signed m and not m'

✓ Nonrepudiation:

• Alice can take m, and signature $K_B(m)$ to court and prove that Bob signed m.

RSA (Rivest-Shamir-Adleman) algorithm

- ✓ One of the first public-key cryptosystems and is widely used.
- ✓ Idea: finding the factors of a large composite number is difficult.

Example: What are the factors of 1027? Can you check 13 and 19? P vs NP

✓ Modular arithmetic:

 $x \mod n = \text{remainder of } x \text{ when divided by } n$

Properties:

$$[(a \bmod n) + (b \bmod n)] \bmod n = (a+b) \bmod n$$
$$[(a \bmod n) - (b \bmod n)] \bmod n = (a-b) \bmod n$$
$$[(a \bmod n) \cdot (b \bmod n)] \bmod n = (a \cdot b) \bmod n$$

Then

$$[(a \bmod n)^d] \bmod n = [(a \bmod n) \cdot \dots \cdot (a \bmod n)] \bmod n = a^d \bmod n$$

Example: x = 14, n = 10, d = 2

- a. $x^d \mod n \Rightarrow 14^2 \mod 10 = 6$
- b. $[(x \mod n)^d] \mod n \Longrightarrow [(14 \mod 10)^2] \mod 10 = 16 \mod 10 = 6$

Exercise

✓ Compute

- ✓ 31 mod 7
- ✓ 27 mod 7
- \checkmark (31 + 27) mod 7
- \checkmark (31 mod 7 + 27 mod 7) mod 7
- \checkmark (31 · 27) mod 7
- \checkmark (31 mod 7) · (27 mod 7) mod 7
- \checkmark 31³ mod 7
- \checkmark (31 mod 7)³ mod 7

Greatest common divisor

- For two integers x, y, the greatest common divisor of x and y is denoted gcd(x,y).
- \checkmark Two nonzero integers a and b is the greatest positive integer d such that d is a divisor of both a and b.
- Examples:
 - a = 27, b = 21 then d = 7.
 - Divisors of a are 1,3, **7**, 27
 - Divisors of *b* are 1, **7**, 21
 - a = 24, b = 54 then d = 6.
 - Divisors of *a* are 1,2,4, **6**, 24
 - Divisors of *b* are 1,2,3, **6**, 9,18,27,27,54
 - a = 57, b = 63 then d = ?

RSA algorithm

Key generation:

- 1. Choose two large prime numbers p, q
- 2. Compute
 - 1. n = pq
 - 2. $\phi(n) = \phi(p,q) = \phi(p)\phi(q) = (p-1)(q-1)$

where $\phi(p) = p - 1$. Note $\phi(n) = \phi(p,q)$ is coprime with pq.

- 3. Choose $e \in (1, \phi(n))$ coprime with $\phi(n)$
- 4. Choose d s.t. $(ed 1) \mod \phi(n) \equiv 0$ Then (e, n) and (d, n) are the keys.

Example:

- 1. p = 13, q = 17
- 2. Compute
 - 1. n = 221
 - 2. $\phi(n) = (13-1)(17-1) = 192$

- 3. e=11, it is coprime with $\phi=192$
- 4. $d = 35 \Rightarrow (11 \cdot 35 1) \mod 192 = 0$ The keys are (11, 221), (35, 221).

 $\phi(n)$ is Euler's Totient Function. See <u>proofs</u> of different interesting properties.

RSA: key generation (Matlab)

Part 1: Key generation

```
% (1) select two distinct prime numbers
p = nthprime(1000); q = nthprime(1001);
% (2) compute n and phi(n) that produces a number that is relatively prime to n
n = q * p;
phi = @(p, q) (p - 1) * (q - 1);
% (3) Choose any number 1 < e < phi(n) that is coprime to phi(n);
e = 0;
while(gcd(e, phi(p,q)) ~= 1) % This number is not a divisor of phi(n)
e = ceil(rand(1) * phi(p,q) + 1); % Randomly peak until the condition is true
end
% (4) Compute d, such that d and e have the same remainder of division by phi.
d = 2;
while(powmod(d*e, 1, phi(p, q)) ~= 1)
d = d + 1;
end</pre>
```

RSA

Encryption/decryption:

1. Divide a message into bit strings s.t. each string corresponds to a decimal number m < n.

- 2. Encrypt: $c = K_e(m)$ $c = (m^e) \mod n$
- 3. Decrypt: $m = K_d(c)$ $m = (c^d) \mod n$

Example:

1. Since n = 221, 7 bits (127 < 221) segments suffice.

```
Plaintext Hi!
[100100011010010100001]
72 105 33
```

2. Encrypt '!': $(33^{11}) \mod 221 = 67$

Cyphertext $67 \Rightarrow 'C'$

B. Decrypt: $(67^{35}) \mod 221 = 33 \implies '!'$

RSA (MATLAB)

```
m = int64('!');
e = 11;
d = 35;
n = 221;
phi = 192;

c = mod(m^d, n) % => 59
m = mod(c^e, n) % => 59
```

m^d causes the overflow

```
m = sym(int64('!'));
e = sym(11);
d = sym(35);
n = sym(221);
phi = sym(192);

c = mod(m^d, n) % => 67 or 'C'
m = mod(c^e, n) % => 33 or 'C'
```

To avoid the overflow, symbolic math is used.

RSA algorithm

Encryption/decryption:

1. Divide a message into bit strings s.t. each string corresponds to a decimal number m < n.

- 2. Encrypt: $c = K_e(m)$ $c = (m^e) \mod n$
- 3. Decrypt: $m = K_d(c)$ $m = (c^d) \mod n$

```
Example (e = 11, d = 35, n = 221):
```

1. Since n = 221, 7 bits (127 < 221) segments suffice.

```
Plaintext Hi!
[100100011010010100001]
72 105 33
```

2. Encrypt '!': $(33^{11}) \mod 221 = 67$

Cyphertext $67 \Rightarrow 'C'$

3. Decrypt:

```
(67^{35}) \mod 221
= (67^2 \cdot 67^{33}) \mod 221
= \{(4489) \mod 221 \cdot (67^{33}) \mod 221\} \mod 221
= \{69 \cdot (67^{33})\} \mod 221
...
= 33 \implies '!
```

Why does RSA work?

✓ Key idea

$$m = (c^d) \bmod n \tag{1}$$

$$c = (m^e) \bmod n \tag{2}$$

Substituting (2) to (1)

$$m = \left(\underbrace{(m^e) \bmod n}_{c}\right)^d \bmod n \tag{3}$$

applying

$$(c^d) \bmod n = (c^{d \bmod \phi(n)}) \bmod n$$

we have

$$(c^{d \bmod \phi(n)}) \bmod n = ((m^e) \bmod n)^{d \bmod \phi(n)} \bmod n \Rightarrow$$

$$((m^e) \bmod n)^{d \bmod \phi(n)} \bmod n = (m^{ed \bmod \phi(n)}) \bmod n. \Rightarrow$$

$$(m^{ed \bmod \phi(n)}) \bmod n = (m^1) \bmod n \Rightarrow$$

$$(c^d) \bmod n = m$$

That's why we chose e and d s.t. $(ed - 1) \mod \phi \equiv 0 \Longrightarrow ed \mod \phi \equiv 1$

RSA: encryption/decryption (Matlab)

Part 2: Encryption and decryption

```
% Verify the property
disp(['mod(d * e, phi) should be 0: ', num2str(powmod(d*e - 1, 1, phi(p, q)))]);
% Public key is then
disp(['Public key: (', num2str(e), ',', num2str(n),')']);
disp(['Private key: (', num2str(d), ',', num2str(n),')']);
m = 13; % message
disp(['Message to be encrypted: ', num2str(m)]);
% Encrypt
%c = mod(m^e, n); % won't work, due to the overflow
c = powmod(m, e, n);
disp(['Encrypted message: ', num2str(c)]);
% Decrypt
m_ = powmod(c, d, n);
disp(['Decrypted message: ', num2str(m_)]);
```

```
function res = powmod(x, e, n)
    res = 1;
    for k = 1:e
        res = mod(res ** x, n);
    end
end
```

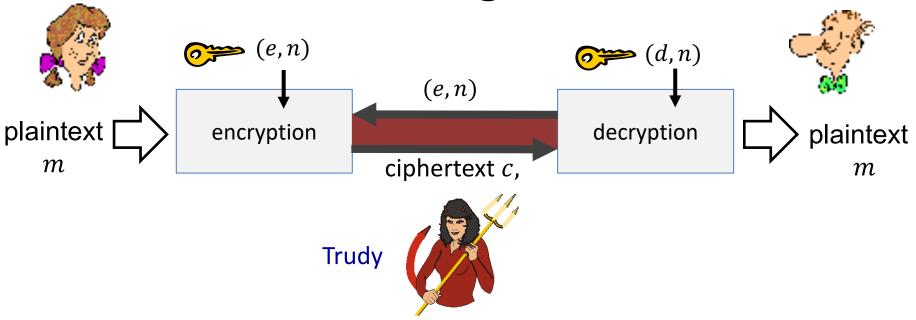
Exercises

- ✓ Exercise (paper and pen) 1: Let the encryption and description keys be
 - \checkmark (e,n)
 - \checkmark (d,n)

where e = 11, d = 35, n = 221,

- \checkmark Encrypt massages $m_1 = 5$, $m_2 = 10$ to obtain cyphertexts c_1 and c_2 .
- \checkmark Decrypt c_1 and c_2 and compare to m_1 and m_2 .
- **Exercises (MATLAB) 2**: Let p = 173 and q = 541
 - \checkmark Compute (e, n) and (d, n)
 - \checkmark Encrypt massages $m_1 = 5$, $m_2 = 10$ to obtain cyphertexts c_1 and c_2 .

Cracking RSA



- \checkmark Captured (e, n) and c, recover m
- \checkmark To decrypt c we need to know d.
- \checkmark Recall what numbers are used to compute d?

Cracking RSA

Linear transformations and matrices

✓ Matrices are very useful for describing transformations.

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

 \checkmark A plane transformation f can be defined as

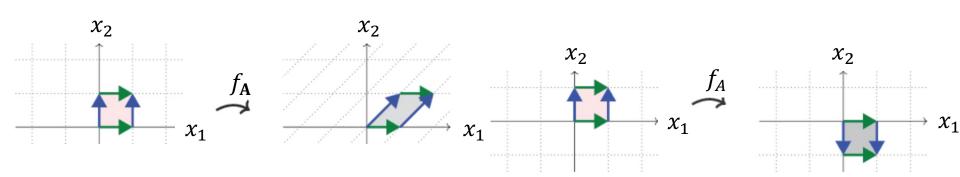
$$f_{\mathbf{A}}(\mathbf{v}) = \mathbf{A}\mathbf{s}$$

 \checkmark If **s** is the position vector of the point (x_1, x_2) then

$$f_{\mathbf{A}}(\mathbf{s}) = f\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix} = \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix}$$

Example: $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

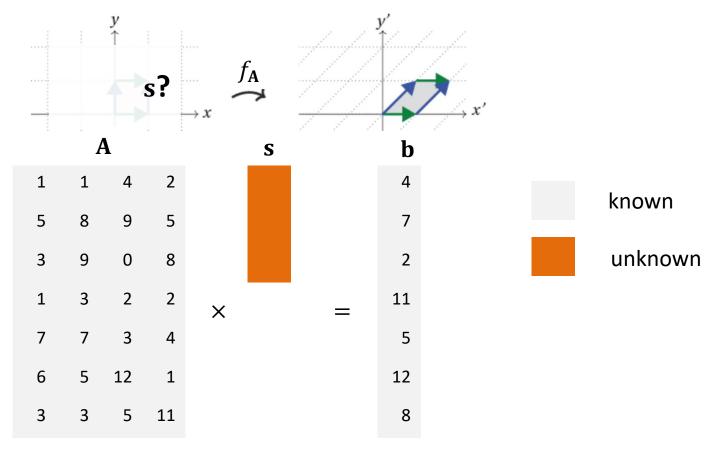
 \checkmark Example: $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$



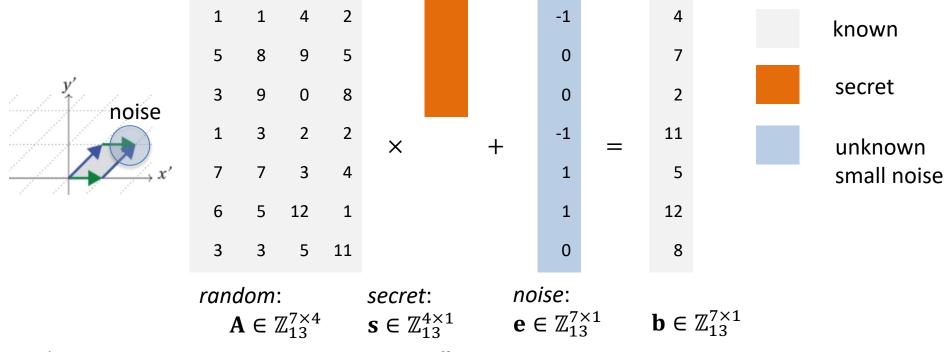
- Let \mathbb{Z}_q denote the ring of integers modulo q and let \mathbb{Z}_q^n denote the set of nvectors over \mathbb{Z}_q .
- **Example**: q = 13, n = 4

1 1 4 2 and
$$q = 13, n = 1$$
 4 y_1
5 8 9 5 7 y_2
3 9 0 8 2 y_3
1 3 2 2 $\mathbf{s} = 11$ y_4
7 7 3 4 5 y_6
6 5 12 1 1 2 y_7
3 3 5 11 8 y_8

✓ Usually, f_A and \mathbf{y} are known and the problem is to find \mathbf{s} in f_A (\mathbf{s}) = \mathbf{b}



 \checkmark It is easy to find \mathbf{s} .



- There exists a linear function $f: \mathbb{Z}_q^n \to \mathbb{Z}_q$ and the input to the LWE problem is a sample of pairs (\mathbf{x}, y) , where $\mathbf{x} \in \mathbb{Z}_q^n$ and $y \in \mathbb{Z}_q$, so that with high probability $y = f(\mathbf{x})$. The deviation from the equality is according to some known noise model.
- **Problem**: A hard problem to find $\mathbf{s} \in \mathbb{Z}_{13}^{7 \times 4}$. [https://en.wikipedia.org/wiki/Learning with errors]

1. Generate private key

$$\mathbf{s} \leftarrow \mathbb{Z}_q^N$$

2. Generate public key

$$b = -As + e$$
public key

4. Decrypt c

$$\mathbf{m} = \frac{1}{L}(\mathbf{A}\mathbf{s} + \mathbf{c})$$

$$\mathbf{c} = \mathbf{b} + L\mathbf{m}$$
 ciphertext

3. Encrypt message **m** to cyphertext **c** (each row encrypts one element in **m**)

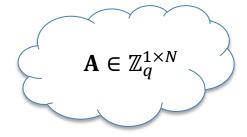
It is easy to see that decryption works

$$\frac{1}{L}(\mathbf{A}\mathbf{s} + \mathbf{c}) = \frac{1}{L}(\mathbf{A}\mathbf{s} + \mathbf{b} + L\mathbf{m}) = \frac{1}{L}(\mathbf{A}\mathbf{s} - \mathbf{A}\mathbf{s} + \mathbf{e} + L\mathbf{m}) = \mathbf{m} + \frac{\mathbf{e}}{L} \approx \mathbf{m}$$

```
% The value of p can be chosen as a power of 10 such that |m| < p/2 for all messages to be used
env.p = 1e4; % Let the set [p] be where the integer to be encrypted belongs to
env.L = 1e4;
env.r = 1e1:
env.N = 4; % Number of elements in column vectors in A
sk = Mod( randi(env.p*env.L, [env.N, 1]), env.p * env.L); % generate secret key
sk =
   -14106118
   -21444101
   -48662258
    17760247
m = 30; % message m, also could be a vector
c = encLWE(m,sk,env) % encrypt message m
C =
   -44887583
             29553384
                         33293629
                                       46706819
                                                  -35180159
m = decLWE(c,sk,env) % decrypt cyphertext c
m =
    30
function y = Mod(x,p)
    y = mod(x,p);
    y = y - (y > = p/2)*p; % map [0, p-1] to [-p/2, p/2-1]
end
```

1. Generate private key

$$\mathbf{s} \leftarrow \mathbb{Z}_q^N$$



2. Generate public key

$$\mathbf{b} = -\mathbf{A}\mathbf{s} + \mathbf{e}$$

$$\mathbf{c} = \mathbf{b} + L\mathbf{m}$$

$$\mathbf{c} = \mathbf{b} + L\mathbf{m}$$

3. Encrypt message m

```
function ciphertext = encLWE(m, sk, env)
    n = length(m);
    q = env.L * env.p; % q = Lp with L being a power of 10
    A = randi(q, [n, env.N]);
    e = Mod(randi(env.r, [n,1]), env.r);
    b = -A*sk + env.L*m + e;
    ciphertext = Mod([b,A], q);
end
```

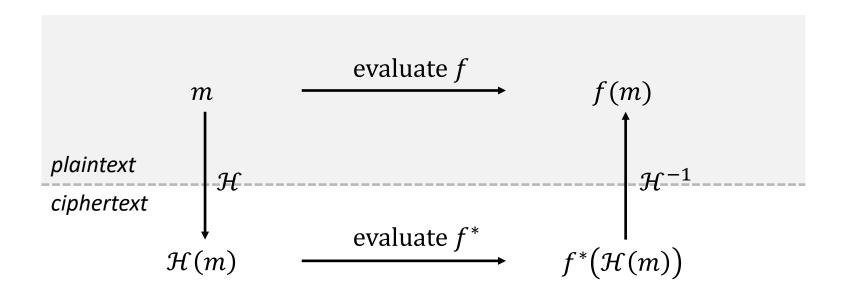

$$\mathbf{m} = \frac{1}{L}(\mathbf{A}\mathbf{s} + \mathbf{c})$$

$$\mathbf{c} = \mathbf{b} + L\mathbf{m}$$
 ciphertext

```
function plaintext = decLWE(c,sk,env)
    s = [1; sk];
    plaintext = round( Mod(c*s, env.L*env.p)/env.L );
end
```

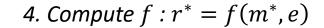
- \checkmark Recall that s=[b,A] so c*s=[1; sk] * [b,A] = b + sk * A
- Recall that $b = -A * sk + env_L * m + e$ then $c*s = -A * sk + env_L * m + e + sk * A = env_L * m + e$

Homomorphic Encryption as a solution privacy preserving computation

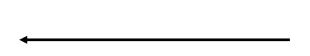


Homomorphic Encryption as a solution privacy preserving computation

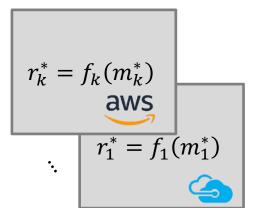
- 1. Generate Keys (e,d)
- 2. Encrypt m: m* = $\mathcal{H}(m, e)$



3. Send (m^*,e) to the server.



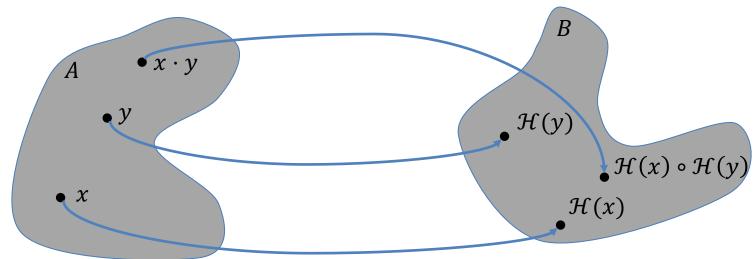
- 5. Send the result r^* back
- 6. Decrypt r^* : $r = \mathcal{H}^{-1}(r^*, d)$



What is homomorphism?

- ✓ A homomorphism is a *structure-preserving map* between two algebraic structures of the same type.
- A map $\mathcal{H}: A \to B$ between two sets A and B, equipped with the same structure, s.t. if \cdot is an operation of the structure then

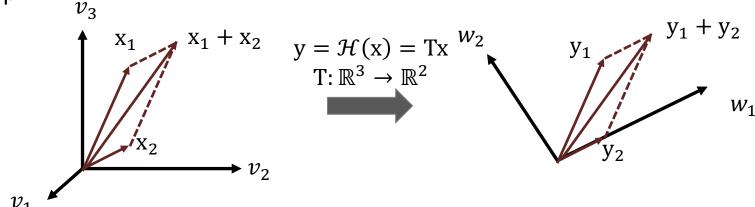
$$\mathcal{H}(x \cdot y) = \mathcal{H}(x) \circ \mathcal{H}(y), \forall x, y \in A$$



 \checkmark \mathcal{H} preserves the operation.

What is homomorphism?

- ✓ An algebraic structure may have more than one operation, and a homomorphism is required to preserve each operation.
- **Example**: A function between vector spaces $\mathcal{H}: \mathcal{V} \to \mathcal{W}$ that preserves the operations of addition and scalar multiplication is a homomorphism or linear map.



$$\begin{split} \mathcal{H}(x_1) &= Tx_1 = y_1, & \mathcal{H}(x_1) = Tx_2 = y_2 \\ \mathcal{H}(x_1 + x_2) &= \mathcal{H}(x_1) + \mathcal{H}(x_2) = y_1 + y_2, & \mathcal{H}(\alpha x_1) = \alpha \mathcal{H}(x_1) \\ T(x_1 + x_2) &= Tx_1 + Tx_2 = y_1 + y_2, & T(\alpha x_1) = \alpha Tx_1 \end{split}$$

What is homomorphism?

- ✓ The notation for the operations does not need to be the same in the source and the target of a homomorphism.
- **Group homomorphism**: Given two groups (G,*) and (H,\cdot) , a function $\mathcal{H}: G \to H$ is group homomorphism if $\mathcal{H}(x*y) \to \mathcal{H}(x) \cdot \mathcal{H}(y)$, $\forall x,y \in G$

✓ Example:

$$\mathcal{H}: x \to e^x, \forall x \in \mathbb{R}$$

$$(\mathbb{R}, +)^{\mathcal{H}}_{\to}(\mathbb{R}^+, \cdot)$$

$$\mathcal{H}(x + y) = \mathcal{H}(x)\mathcal{H}(y) \Longrightarrow$$

$$e^{x+y} = e^x e^y,$$

$$G: x \to \ln x, \forall x \in \mathbb{R}^+$$

$$(\mathbb{R}^+, \cdot)_{\to}^g (\mathbb{R}, +)$$

$$G(xy) = G(x) + G(y) \Longrightarrow$$

$$\ln(xy) = \ln(x) + \ln(y)$$

 \mathcal{H} is also an *isomorphism* as its inverse function $\mathcal{H}^{-1}=\mathcal{G}(x)$ forms a group homomorphism

Example: Compute f(x) = 2x + 1, on "encrypted x" $\mathcal{H}(x)$ $\mathcal{H}\{2x + 1\} = e^{2x+1} = e^x e^x e = \mathcal{H}(x)\mathcal{H}(x)\mathcal{H}(1) = \left(\mathcal{H}(x)\right)^2 \cdot \mathcal{H}(1)$ $\mathcal{G}\left\{\left(\mathcal{H}(x)\right)^2 \cdot \mathcal{H}(1)\right\} = \mathcal{G}\left\{\left(\mathcal{H}(x)\right)^2\right\} + \mathcal{G}\{\mathcal{H}(1)\} = \mathcal{G}\{\mathcal{H}(x)\} + \mathcal{G}\{\mathcal{H}(x)\} + 1 = 2x + 1$

Example of multiplicative homomorphism using RSA

RSA scheme is multiplicatively homomorphic

Compute m_1m_2 :

- 1. Generate keys (e, n) and (d, n)
- 2. Encrypt:

$$c_1 = \mathcal{H}_e(m_1) = (m_1^e) \mod n$$

 $c_2 = \mathcal{H}_e(m_2) = (m_2^e) \mod n$

3. Compute:

$$c_1 c_2 = \mathcal{H}_e(m_1) \cdot \mathcal{H}_e(m_2)$$

$$= ((m_1^e) \bmod n) \cdot ((m_1^e) \bmod n)$$

$$= (m_1 m_2)^e \bmod n = \mathcal{H}_e(m_1 m_2) = c_{12}$$

4. Decrypt: c_{12} $\mathcal{H}_d(c_{12}) = (c_{12}^d) \mod n = m_1 m_2$

Example:

- 1. Let e = 11, d = 35, n = 221, and $m_1 = 5$, $m_2 = 10$
- 2. Encrypt: $c_1 = (5^{11}) \mod 221 = 164$ $c_2 = (10^{11}) \mod 221 = 173$
- 3. Compute $c_{12} = 164 \cdot 173 = 28372$
- 4. Decrypt:

$$m_1 m_2 = (28372^{35}) \mod 221$$

 $m_1m_2 = ($ 7098200968290592840991958652267788 1571486384800862824462878933961928 9085294896750081950091846259916085 3592398936486064467237262654024462 $26199977018332807168) \mod 221 = \mathbf{50}$

Example of multiplicative homomorphism (MATLAB)

```
% Define the keys
e = 11; d = 35; n = 221;
% Display public and private keys
disp(['Public key: (', num2str(e), ',', num2str(n),')']);
disp(['Private key: (', num2str(d), ',', num2str(n),')']);
% Define the numbers
m1 = 5:
m2 = 10:
disp(['Message to be encrypted: ', num2str(m1)]);
disp(['Message to be encrypted: ', num2str(m2)]);
% Encrypt the numbers
c1 = powmod(m1, e, n);
c2 = powmod(m2, e, n);
disp(['Encrypted number1: ', num2str(c1)]);
disp(['Encrypted number2: ', num2str(c2)]);
% Compute (multiply) over encrypted numbers
c12 = c1 * c2:
disp(['Encrypted results: ', num2str(c12)]);
% Decrypt the result
m = powmod(c12, d, n);
disp(['Decrypted message: ', num2str(m )]);
```

Public key: (11,221)
Private key: (35,221)
Message to be encrypted: 5
Message to be encrypted: 10
Encrypted number1: 164
Encrypted number2: 173
Encrypted results: 28372
Decrypted message: 50