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Information security
ü The practice of protecting information by mitigating information risks.

• Secure storage
• Secure communication
• Secure computation
• Etc

ü Information security uses cryptography to transform usable information into 
a form that renders it unusable by anyone other than an authorized user 
(encryption).
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Secure sender Secure receiver 

Alice BobTrudy

data data



The language of cryptography
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encryption decryption

Alice’s encryption key Bob’s decryption key

Trudy

plaintext
𝑚

𝐾! 𝐾"ciphertext
Plaintext

𝑚

𝑚 plaintext message
𝐾! 𝑚 ciphertext, encrypted with key 𝐾!
𝑚 = 𝐾" 𝐾! 𝑚



Applications of asymmetric cryptography
ü What can go wrong ?

• eavesdrop: intercept messages
• actively insert messages into connection
• impersonation: can fake (spoof) source address in packet (or any field in packet)
• hijacking: “take over” ongoing connection by removing sender or receiver, 

inserting himself in place
• denial of service: prevent service from being used by others (e.g.,  by overloading 

resources)
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Symmetric and Asymmetric 
cryptography
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encryption decryptionplaintext
𝑚

𝐾# 𝐾#ciphertext 𝐾# 𝑚
plaintext

𝑚

ü Symmetric key crypto: Bob and Alice share same (symmetric) key:
𝐾! = 𝐾" = 𝐾#

ü Asymmetric key crypto: 𝐾!$, 𝐾!%: Alice’s public and private key,
𝐾"$, 𝐾"%:  Bob’s public and private key, 

encryption decryptionplaintext
𝑚

𝐾"$ 𝐾"%

plaintext
𝑚

ciphertext 𝐾"$ 𝑚



Simple digital signature for message 𝑚
ü Goal: sender (Bob) digitally signs document,  establishing he is document 

owner/creator. 
ü verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and 

no one else (including Alice), must have signed document 
ü Bob signs 𝑚 by encrypting with his private key 𝐾"%,  creating “signed”

message, 𝐾"% 𝑚
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Dear Alice
Oh, how I have missed you. I 
think of you all the time! 
…(blah blah blah)

Bob

Bob’s message, 𝑚

Public key
encryption
algorithm

Bob!s message, 
𝑚, signed 

(encrypted) with 
his private key

𝐾"% 𝑚,𝐾"% 𝑚



Simple digital signature for message 𝑚
ü Suppose Alice receives msg 𝑚, with signature: 𝑚,𝐾"% 𝑚
ü Alice verifies 𝑚 signed by Bob by applying Bob’s public key 𝐾"$ to 𝐾"% 𝑚

then checks 𝐾"$ 𝐾"% 𝑚 = 𝑚.

ü If 𝐾"$ 𝐾"% 𝑚 = 𝑚, whoever signed 𝑚 must have used Bob’s private key.

ü Result:
ü Alice thus verifies that

• Bob signed 𝑚
• no one else signed 𝑚
• Bob signed 𝑚 and not 𝑚′

ü Nonrepudiation:
• Alice can take 𝑚, and signature 𝐾" 𝑚 to court and prove that Bob signed 𝑚.
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RSA (Rivest–Shamir–Adleman) algorithm
ü One of the first public-key cryptosystems and is widely used.
ü Idea: finding the factors of a large composite number is difficult.
Example: What are the factors of 1027 ? Can you check 13 and 19 ? 𝑃 vs 𝑁𝑃
ü Modular arithmetic:

𝑥 mod 𝑛 = remainder of 𝑥 when divided by 𝑛
Properties:

𝑎 mod 𝑛 + 𝑏 mod 𝑛 mod 𝑛 = 𝑎 + 𝑏 mod 𝑛
𝑎 mod 𝑛 − 𝑏 mod 𝑛 mod 𝑛 = 𝑎 − 𝑏 mod 𝑛
𝑎 mod 𝑛 ⋅ 𝑏 mod 𝑛 mod 𝑛 = 𝑎 ⋅ 𝑏 mod 𝑛

Then
[ 𝑎 mod 𝑛 &]mod 𝑛 = 𝑎 mod 𝑛 ⋅ … ⋅ 𝑎 mod 𝑛 mod 𝑛 = 𝑎&mod 𝑛

Example: 𝑥 = 14, 𝑛 = 10, 𝑑 = 2
a. 𝑥&mod 𝑛 ⟹ 14' mod 10 = 6
b. [ 𝑥 mod 𝑛 &]mod 𝑛 ⟹ [ 14 mod 10 ']mod 10 = 16 mod 10 = 6
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Exercise
ü Compute 

ü 31 mod 7
ü 27 mod 7
ü 31 + 27 mod 7
ü 31 mod 7 + 27 mod 7 mod 7
ü 31 ⋅ 27 mod 7
ü 31 mod 7 ⋅ 27 mod 7 mod 7
ü 31& mod 7
ü 31 mod 7 & mod 7
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Greatest common divisor
ü For two integers 𝑥, 𝑦, the greatest common divisor of 𝑥 and 𝑦 is denoted 

gcd 𝑥, 𝑦 .
ü Two nonzero integers 𝑎 and 𝑏 is the greatest positive integer 𝑑 such that 𝑑 is 

a divisor of both 𝑎 and 𝑏.
ü Examples:

• 𝑎 = 27, 𝑏 = 21 then 𝑑 = 7.
• Divisors of 𝑎 are 1,3, 𝟕, 27
• Divisors of 𝑏 are 1, 𝟕, 21

• 𝑎 = 24, 𝑏 = 54 then 𝑑 = 6.
• Divisors of 𝑎 are 1,2,4, 𝟔, 24
• Divisors of 𝑏 are 1,2,3, 𝟔, 9,18,27,27,54

• 𝑎 = 57, 𝑏 = 63 then 𝑑 = ?
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RSA algorithm
Key generation:
1. Choose two large prime numbers 𝑝, 𝑞
2. Compute

1. 𝑛 = 𝑝𝑞
2. 𝜙 𝑛 = 𝜙 𝑝, 𝑞 = 𝜙 𝑝 𝜙 𝑞 =

𝑝 − 1 𝑞 − 1
where 𝜙 𝑝 = 𝑝 − 1. Note 𝜙 𝑛 = 𝜙 𝑝, 𝑞 is 
coprime with 𝑝𝑞.

3. Choose 𝑒 ∈ 1, 𝜙 𝑛 coprime with 𝜙 𝑛
4. Choose 𝑑 s.t. 𝑒𝑑 − 1 mod 𝜙 𝑛 ≡ 0
Then 𝑒, 𝑛 and 𝑑, 𝑛 are the keys.

ϕ 𝑛 is Euler's Totient Function. See proofs of 
different interesting properties. 
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Example:
1. 𝑝 = 13, 𝑞 = 17
2. Compute

1. 𝑛 = 221
2. 𝜙 𝑛 = 13 − 1 17 − 1 = 192

3. 𝑒 = 11, it is coprime with 𝜙 = 192
4. 𝑑 = 35 ⟹ 11 ⋅ 35 − 1 mod 192 = 0
The keys are 11, 221 , 35,221 .

http://mathonline.wikidot.com/euler-s-totient-theorem


RSA: key generation (Matlab)
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% (1) select two distinct prime numbers
p = nthprime(1000); q = nthprime(1001);
% (2) compute n and phi(n) that produces a number that is relatively prime to n
n = q * p; 
phi = @(p, q) (p - 1) * (q - 1);
% (3) Choose any number 1 < e < phi(n) that is coprime to phi(n);
e = 0;
while(gcd(e, phi(p,q)) ~= 1) % This number is not a divisor of phi(n)

e = ceil(rand(1) * phi(p,q) + 1); % Randomly peak until the condition is true
end
% (4) Compute d, such that d and e have the same remainder of division by phi. 
d = 2;
while(powmod(d*e, 1, phi(p, q)) ~= 1)

d = d + 1;
end

Part 1: Key generation 



RSA
Encryption/decryption:
1. Divide a message into bit strings s.t.

each string corresponds to a decimal 
number 𝑚 < 𝑛.

2. Encrypt: 𝑐 = 𝐾' 𝑚
𝑐 = 𝑚' mod 𝑛

3. Decrypt: 𝑚 = 𝐾( 𝑐
𝑚 = 𝑐( mod 𝑛
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Example:
1. Since 𝑛 = 221, 7 bits (127 < 221) segments 

suffice. 
Plaintext Hi!

100100011010010100001
72 105 33

2. Encrypt ′! ′:
33)) mod 221 = 67

Cyphertext 67 ⟹ ′𝐶′
3. Decrypt:

67&* mod 221 = 33 ⟹ ′! ′



RSA (MATLAB)
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m   = int64('!'); 
e   = 11;
d   = 35;
n   = 221;
phi = 192;

c   = mod(m^d, n) % => 59
m   = mod(c^e, n) % => 59

m   = sym(int64('!')); 
e   = sym(11);
d   = sym(35);
n   = sym(221);
phi = sym(192);

c   = mod(m^d, n) % => 67 or ‘C’
m   = mod(c^e, n) % => 33 or 'C’

m^d causes the overflow To avoid the overflow, symbolic 
math is used. 



RSA algorithm
Encryption/decryption:
1. Divide a message into bit strings s.t.

each string corresponds to a decimal 
number 𝑚 < 𝑛.

2. Encrypt: 𝑐 = 𝐾' 𝑚
𝑐 = 𝑚' mod 𝑛

3. Decrypt: 𝑚 = 𝐾( 𝑐
𝑚 = 𝑐( mod 𝑛
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Example (𝑒 = 11, 𝑑 = 35, 𝑛 = 221):
1. Since 𝑛 = 221, 7 bits (127 < 221) segments 

suffice. 
Plaintext Hi!

100100011010010100001
72 105 33

2. Encrypt ′! ′:
33)) mod 221 = 67

Cyphertext 67 ⟹ ′𝐶′
3. Decrypt:
67&* mod 221
= 67+ ⋅ 67&& mod 221
= 4489 mod 221 ⋅ 67&& mod 221 mod 221
= 69 ⋅ 67&& mod 221
…
= 33 ⟹ ′! ′



Why does RSA work?
ü Key idea

𝑚 = 𝑐& mod 𝑛 1
𝑐 = 𝑚( mod 𝑛 2

Substituting 2 to 1
𝑚 = 𝑚( mod 𝑛 &mod 𝑛 3

𝑐
applying

𝑐& mod 𝑛 = 𝑐&)*+, - mod 𝑛
we have

𝑐&)*+, - mod 𝑛 = 𝑚( mod 𝑛
&)*+, -

mod 𝑛 ⟹

𝑚( mod 𝑛 &)*+, - mod 𝑛 = 𝑚(& )*+, - mod 𝑛. ⟹
𝑚(& )*+, - mod 𝑛 = 𝑚. mod 𝑛 ⟹

𝒄𝒅 𝐦𝐨𝐝 𝒏 = 𝒎
That’s why we chose 𝑒 and 𝑑 s.t. 𝑒𝑑 − 1 mod 𝜙 ≡ 0 ⟹ 𝑒𝑑 mod 𝜙 ≡ 1
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RSA: encryption/decryption (Matlab)

17

% Verify the property
disp(['mod(d * e, phi) should be 0: ', num2str(powmod(d*e - 1, 1, phi(p, q)))]);
% Public key is then
disp(['Public key:  (', num2str(e), ',', num2str(n),')']);
disp(['Private key: (', num2str(d), ',', num2str(n),')']);
m = 13; % message
disp(['Message to be encrypted: ', num2str(m)]);
% Encrypt
%c = mod(m^e, n); % won't work, due to the overflow
c = powmod(m, e, n);
disp(['Encrypted message: ', num2str(c)]);
% Decrypt
m_ = powmod(c, d, n);
disp(['Decrypted message: ', num2str(m_)]);

function res = powmod(x, e, n)
res = 1;
for k = 1:e

res = mod(res .* x, n);
end

end

Part 2: Encryption and decryption



Exercises
ü Exercise (paper and pen) 1: Let the encryption and description keys be 

ü 𝑒, 𝑛
ü 𝑑, 𝑛
where 𝑒 = 11, 𝑑 = 35, 𝑛 = 221,
ü Encrypt massages 𝑚) = 5,𝑚+ = 10 to obtain cyphertexts 𝑐) and 𝑐+.
ü Decrypt 𝑐) and 𝑐+ and compare to 𝑚) and 𝑚+.

ü Exercises (MATLAB) 2: Let 𝑝 = 173 and 𝑞 = 541
ü Compute 𝑒, 𝑛 and 𝑑, 𝑛
ü Encrypt massages 𝑚) = 5,𝑚+ = 10 to obtain cyphertexts 𝑐) and 𝑐+.
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Cracking RSA

ü Captured (𝑒, 𝑛) and 𝑐, recover 𝑚
ü To decrypt 𝑐 we need to know 𝑑.
ü Recall what numbers are used to compute 𝑑? 
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encryption decryptionplaintext
𝑚

(𝑒, 𝑛)

plaintext
𝑚ciphertext 𝑐,

Trudy

(𝑒, 𝑛)
(𝑑, 𝑛)



Cracking RSA
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% To crack the message
% (1) Factorise n
factors = factor(n);
p_ = factors(1);
q_ = factors(2);
phi_ = (p_ - 1) * (q_ - 1);
% (2) Find a secret key such that mod(d * e, phi_) == 1
d_ = 2;
while(powmod(d_ * e, 1, phi_) ~= 1)

d_ = d_ + 1;
end
disp(['Recoverd private key: (', num2str(d_), ',', num2str(n),')']);
% (3) Decrypt the message as usual
m_ = powmod(c, d_, n);
disp(['Decrypted message: ', num2str(m_)]);



Linear transformations and matrices
ü Matrices are very useful for describing transformations

𝐀 = 𝑎 𝑏
𝑐 𝑑

ü A plane transformation 𝑓 can be defined as
𝑓𝐀 𝐯 = 𝐀𝐬

ü If 𝐬 is the position vector of the point 𝑥., 𝑥' then

𝑓𝐀 𝐬 = 𝑓
𝑥.
𝑥' = 𝐀

𝑥.
𝑥' = 𝑎 𝑏

𝑐 𝑑
𝑥.
𝑥' = 𝑎𝑥. + 𝑏𝑥'

𝑐𝑥. + 𝑑𝑥'
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ü Example: 𝐀 = 1 1
0 1 ü Example: 𝐀 = 1 0

0 −1

𝑓𝐀 𝑓!

𝑥)

𝑥+

𝑥)

𝑥+
𝑥+ 𝑥+

𝑥) 𝑥)



Learning with Errors (LWE)
ü Let ℤ1 denote the ring of integers modulo 𝑞 and let ℤ1- denote the set of n-

vectors over ℤ1.
ü Example: 𝑞 = 13, 𝑛 = 4 and 𝑞 = 13, 𝑛 = 1
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1 1 4 2

5 8 9 5

3 9 0 8

1 3 2 2

7 7 3 4

6 5 12 1

3 3 5 11

𝐀 =

4

7

2

11

5

12

8

𝐬 =

𝐱) 𝐱+ 𝐱& 𝐱-

𝑦)
𝑦+
𝑦&
𝑦-
𝑦.
𝑦/
𝑦0



Learning with Errors (LWE)
ü Usually, 𝑓𝑨 and 𝐲 are known and the problem is to find 𝐬 in 𝑓𝑨 (𝐬) = 𝐛

ü It is easy to find 𝐬.
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1 1 4 2

5 8 9 5

3 9 0 8

1 3 2 2

7 7 3 4

6 5 12 1

3 3 5 11

4

7

2

11

5

12

8

× =

known

unknown

𝐬? 𝑓𝐀

𝐀 𝐛𝐬



Learning with Errors (LWE)

ü There exists a linear function 𝑓: ℤ1- → ℤ1 and the input to the LWE problem is 
a sample of pairs 𝐱, 𝑦 , where 𝐱 ∈ ℤ1- and 𝑦 ∈ ℤ1, so that with high 
probability 𝑦 = 𝑓 𝐱 . The deviation from the equality is according to some 
known noise model.

ü Problem: A hard problem to find 𝐬 ∈ ℤ.34×6. [https://en.wikipedia.org/wiki/Learning_with_errors]
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1 1 4 2

5 8 9 5

3 9 0 8

1 3 2 2

7 7 3 4

6 5 12 1

3 3 5 11

-1

0

0

-1

1

1

0

4

7

2

11

5

12

8

× + =

random: 
𝐀 ∈ ℤ)&/×-

secret: 
𝐬 ∈ ℤ)&-×)

noise: 
𝐞 ∈ ℤ)&/×) 𝐛 ∈ ℤ)&/×)

known

secret

unknown 
small noise

noise

https://en.wikipedia.org/wiki/Learning_with_errors


Learning with Errors (LWE)
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𝐛 = −𝐀𝐬 + 𝐞

𝐬 ← ℤ23

𝐦 =
1
𝐿 𝐀𝐬 + 𝐜

𝐀 ∈ ℤ2)×3

𝐜 = 𝐛 + 𝐿𝐦
public key

ciphertext

1. Generate private key

2. Generate public key

3. Encrypt message 𝐦 to 
cyphertext 𝐜 (each row 
encrypts one element in 𝐦)

4. Decrypt 𝐜

1
𝐿 𝐀𝐬 + 𝐜 =

1
𝐿 𝐀𝐬 + 𝐛 + 𝐿𝐦 =

1
𝐿 𝐀𝐬 − 𝐀𝐬 + 𝐞 + 𝐿𝐦 = 𝐦+

𝐞
𝐿 ≈ 𝐦

It is easy to see that decryption works



Learning with Errors (LWE)
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% The value of p can be chosen as a power of 10 such that |m| < p/2 for all messages to be used
env.p = 1e4; % Let the set [p] be where the integer to be encrypted belongs to
env.L = 1e4; 
env.r = 1e1; 
env.N = 4; % Number of elements in column vectors in A

sk = Mod( randi(env.p*env.L, [env.N, 1]), env.p * env.L); % generate secret key
sk =

-14106118
-21444101
-48662258
17760247

m = 30; % message m, also could be a vector
c = encLWE(m,sk,env) % encrypt message m
c =

-44887583    29553384    33293629    46706819   -35180159

m = decLWE(c,sk,env) % decrypt cyphertext c

m =
30

function y = Mod(x,p)
y = mod(x,p); 
y = y - (y >= p/2)*p; % map [0, p-1] to [-p/2, p/2-1]

end



Learning with Errors (LWE)
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function ciphertext = encLWE(m, sk, env)
n = length(m); 
q = env.L * env.p; % q = Lp with L being a power of 10
A = randi(q, [n, env.N]);
e = Mod(randi(env.r, [n,1]), env.r);
b = -A*sk + env.L*m + e;
ciphertext = Mod([b,A], q);

end

𝐛 = −𝐀𝐬 + 𝐞

𝐬 ← ℤ23
𝐀 ∈ ℤ2)×3

𝐜 = 𝐛 + 𝐿𝐦
public key

ciphertext

1. Generate private key

2. Generate public key

sk = Mod( randi(env.p*env.L, [env.N, 1]), env.p * env.L); % generate secret key

3. Encrypt message 𝐦



Learning with Errors (LWE)
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function plaintext = decLWE(c,sk,env)
s = [1; sk];
plaintext = round( Mod(c*s, env.L*env.p)/env.L );

end

𝐦 =
1
𝐿 𝐀𝐬 + 𝐜

𝐜 = 𝐛 + 𝐿𝐦

ciphertext

4. Decrypt 𝐜

ü Recall that s=[b,A] so  c*s=[1; sk] * [b,A] = b + sk * A
ü Recall that b = -A * sk + env.L * m + e then

c*s = -A * sk + env.L * m + e + sk * A = env.L * m + e 
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ℋ 𝑚 𝑓∗ ℋ 𝑚

𝑚 𝑓(𝑚)
evaluate 𝑓

ℋ
plaintext

ciphertext
ℋ%.

evaluate 𝑓∗

Homomorphic Encryption as a solution 
privacy preserving computation



𝑟)∗ = 𝑓) 𝑚)
∗
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1. Generate Keys 𝑒, 𝑑
…

𝑟5∗ = 𝑓5 𝑚5
∗

2. Encrypt 𝑚: 𝑚∗ = ℋ 𝑚, 𝑒

3. Send (𝑚∗, 𝑒) to the server. 

4. Compute 𝑓 : 𝑟∗ = 𝑓 𝑚∗, 𝑒

5. Send the result 𝑟∗ back

6. Decrypt 𝑟∗: 𝑟 = ℋ%) 𝑟∗, 𝑑

public key

private key

Homomorphic Encryption as a solution 
privacy preserving computation



What is homomorphism?
ü A homomorphism is a structure-preserving map between two algebraic 

structures of the same type.
ü A map ℋ:𝐴 → 𝐵 between two sets 𝐴 and 𝐵, equipped with the same 

structure, s.t. if ⋅ is an operation of the structure then
ℋ 𝑥 ⋅ 𝑦 = ℋ 𝑥 ∘ ℋ 𝑦 , ∀𝑥, 𝑦 ∈ 𝐴

ü ℋpreserves the operation.
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𝐴

𝐵

𝑥

𝑦

𝑥 ⋅ 𝑦

ℋ(𝑥)

ℋ(𝑦)

ℋ 𝑥 ∘ ℋ 𝑦



What is homomorphism?
ü An algebraic structure may have more than one operation, and a 

homomorphism is required to preserve each operation.
ü Example: A function between vector spaces  ℋ:𝒱 → 𝒲 that preserves the 

operations of addition and scalar multiplication is a homomorphism or linear 
map.

ℋ x. = 𝑇x. = y., ℋ x. = 𝑇x' = y'
ℋ x. + x' = ℋ x. +ℋ x' = y. + y', ℋ 𝛼x. = 𝛼ℋ x.
T x. + x' = Tx. + Tx' = y. + y' , T 𝛼x. = 𝛼Tx.
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𝑣)
𝑣+

𝑣&

𝑤)

𝑤+x)

x+

x) + x+ y)

y+

y) + y+
y = ℋ x = Tx
T:ℝ& → ℝ+



What is homomorphism?
ü The notation for the operations does not need to be the same in the source 

and the target of a homomorphism.
ü Group homomorphism:  Given two groups 𝐺,∗ and 𝐻,⋅ , a function 

ℋ:𝐺 → 𝐻 is group homomorphism if 
ℋ 𝑥 ∗ 𝑦 → ℋ 𝑥 ⋅ ℋ 𝑦 , ∀𝑥, 𝑦 ∈ 𝐺

ü Example: 

ℋ is also an isomorphism as its inverse function ℋ%. = 𝒢 𝑥 forms a group 
homomorphism
ü Example:  Compute 𝑓 𝑥 = 2𝑥 + 1, on ”encrypted 𝑥” ℋ 𝑥

ℋ 2𝑥 + 1 = 𝑒+6$) = 𝑒6𝑒6𝑒 = ℋ 𝑥 ℋ 𝑥 ℋ 1 = ℋ 𝑥 + ⋅ ℋ 1
𝒢 ℋ 𝑥 + ⋅ ℋ 1 = 𝒢 ℋ 𝑥 + + 𝒢 ℋ 1 = 𝒢 ℋ 𝑥 + 𝒢 ℋ 𝑥 + 1 = 2𝑥 + 1
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ℋ:𝑥 → 𝑒8, ∀𝑥 ∈ ℝ
ℝ,+ →

ℋ ℝ$,⋅
ℋ 𝑥 + 𝑦 = ℋ 𝑥 ℋ 𝑦 ⟹

𝑒8$; = 𝑒8𝑒;,

𝒢: 𝑥 → ln 𝑥 , ∀𝑥 ∈ ℝ$
ℝ$,⋅ →

< ℝ,+
𝒢 𝑥𝑦 = 𝒢 𝑥 + 𝒢 𝑦 ⟹
ln 𝑥𝑦 = ln 𝑥 + ln 𝑦



Example of multiplicative 
homomorphism using RSA

ü RSA scheme is multiplicatively homomorphic
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Compute 𝑚.𝑚':
1. Generate keys 𝑒, 𝑛 and 𝑑, 𝑛

2. Encrypt:
𝑐) = ℋ' 𝑚) = 𝑚)

' mod 𝑛
𝑐+ = ℋ' 𝑚+ = 𝑚+

' mod 𝑛
3. Compute:

𝑐)𝑐+ = ℋ' 𝑚) ⋅ ℋ' 𝑚+
= 𝑚)

' mod 𝑛 ⋅ 𝑚)
' mod 𝑛

= 𝑚)𝑚+
' mod 𝑛 = ℋ' 𝑚)𝑚+ = 𝑐)+

4. Decrypt: 𝑐)+
ℋ( 𝑐)+ = 𝑐)+( mod 𝑛 = 𝑚.𝑚'

Example:
1. Let 𝑒 = 11, 𝑑 = 35, 𝑛 = 221, and 

𝑚) = 5,𝑚+ = 10
2. Encrypt :

𝑐) = 5)) mod 221 = 164
𝑐+ = 10)) mod 221 = 173

3. Compute
𝑐)+ = 164 ⋅ 173 = 28372

4. Decrypt:
𝑚)𝑚+ = 28372&* mod 221

𝑚)𝑚+ = (
7098200968290592840991958652267788
1571486384800862824462878933961928
9085294896750081950091846259916085
3592398936486064467237262654024462
26199977018332807168) mod 221 = 𝟓𝟎



Example of multiplicative 
homomorphism (MATLAB)
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% Define the keys
e = 11; d = 35; n = 221;
% Display public and private keys 
disp(['Public key: (', num2str(e), ',', num2str(n),')']);
disp(['Private key: (', num2str(d), ',', num2str(n),')’]);
% Define the numbers
m1 = 5; 
m2 = 10; 
disp(['Message to be encrypted: ', num2str(m1)]);
disp(['Message to be encrypted: ', num2str(m2)]);
% Encrypt the numbers
c1 = powmod(m1, e, n);
c2 = powmod(m2, e, n);
disp(['Encrypted number1: ', num2str(c1)]);
disp(['Encrypted number2: ', num2str(c2)]);
% Compute (multiply) over encrypted numbers
c12 = c1 * c2;
disp(['Encrypted results: ', num2str(c12)]);
% Decrypt the result
m_ = powmod(c12, d, n);
disp(['Decrypted message: ', num2str(m_)]);

Public key:  (11,221)
Private key: (35,221)
Message to be encrypted: 5
Message to be encrypted: 10
Encrypted number1: 164
Encrypted number2: 173
Encrypted results: 28372
Decrypted message: 50


