Fun of Online Algorithms
Enrichment Lecture

Sid Chi-Kin Chau

Australian National University

sid.chau@anu.edu.au

November 5, 2022
- There is always uncertainty in future. How to cope with uncertain future?
Online Decision Problem #1: Elevator or Stairs

- You can either use the elevator but need to wait, or take the stairs.
- It takes E mins to get to your floor by elevator (once it comes).
- But the waiting time for elevator is unknown.
- It takes S mins by stairs, where $S > E$.

If you are an oracle (i.e., you can predict the future), what will you do?

If the waiting time $W \geq S - E$, then take the stairs, else wait for the elevator.

This is called the *offline optimal solution*.

But you are not an oracle, you don't know the true W, how long should you wait for the elevator?

This is called an *online decision problem*.
Online Decision Problem #1: Elevator or Stairs

Elevator or Stairs

- You can either use the elevator but need to wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs, where $S > E$

If you are an oracle (i.e., you can predict the future), what will you do?

If the waiting time $W \geq S - E$, then take the stairs, else wait for the elevator.

This is called the offline optimal solution.

But you are not an oracle, you don't know the true W, how long should you wait for the elevator?

This is called an online decision problem.
Online Decision Problem #1: Elevator or Stairs

You can either use the elevator but need to wait, or take the stairs.

- It takes E mins to get to your floor by elevator (once it comes).
- But the waiting time for elevator is unknown.
- It takes S mins by stairs, where $S > E$.

If you are an oracle (i.e., you can predict the future), what will you do?

- If the waiting time $W \geq S - E$, then take the stairs, else wait for the elevator.
- This is called the **offline optimal solution**.
Online Decision Problem #1: Elevator or Stairs

You can either use the elevator but need to wait, or take the stairs.
It takes E mins to get to your floor by elevator (once it comes).
But the waiting time for elevator is unknown.
It takes S mins by stairs, where $S > E$.

If you are an oracle (i.e., you can predict the future), what will you do?
If the waiting time $W \geq S - E$, then take the stairs, else wait for the elevator.
This is called the offline optimal solution.
But you are not an oracle, you don’t know the true W, how long should you wait for the elevator?
Online Decision Problem #1: Elevator or Stairs

You can either use the elevator but need to wait, or take the stairs.

It takes \(E \) mins to get to your floor by elevator (once it comes).

But the waiting time for elevator is unknown.

It takes \(S \) mins by stairs, where \(S > E \).

If you are an oracle (i.e., you can predict the future), what will you do?

If the waiting time \(W \geq S - E \), then take the stairs, else wait for the elevator.

This is called the offline optimal solution.

But you are not an oracle, you don’t know the true \(W \), how long should you wait for the elevator? This is called an online decision problem.
Online Decision Problem #1: Elevator or Stairs

Elevator or Stairs

- You can either use the elevator and wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs
Online Decision Problem #1: Elevator or Stairs

Elevator or Stairs
- You can either use the elevator and wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs

Waiting Strategy
- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs
Online Decision Problem #1: Elevator or Stairs

Elevator or Stairs

- You can either use the elevator and wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs

Waiting Strategy

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs

How do we choose X?
Is there a way to systematically analyze the waiting strategy with respect to X?
Imagine Playing Chess with Adversary
Suppose $E = 1$ and $S = 5$

Let the offline optimal total time be Opt, and the online total time be Online

Let the ratio be $\frac{\text{Online}}{\text{Opt}}$

You can choose X either $X = 2$ or $X = 5$
Playing a Zero-sum Game with Adversary

- Suppose $E = 1$ and $S = 5$
- Let the offline optimal total time be Opt, and the online total time be Online
- Let the ratio be $\frac{\text{Online}}{\text{Opt}}$
- You can choose X either $X = 2$ or $X = 5$
- In general, what X will you choose to minimize the ratio between Online and Opt?
Waiting Strategy $A_{EoS}(X)$

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs

The total time of $A_{EoS}(X) = \begin{cases} W + E, & \text{if } W \leq X \\ X + S, & \text{if } W > X \end{cases}$

Let the ratio:

$R(W, X) = \begin{cases} W + E, & \text{if } W \leq X \\ X + S, & \text{if } W > X \end{cases}$

How will Adversary choose W? How will you choose X in response?

The competitive ratio is:

$\alpha(A_{EoS}) = \min_X \max_W R(W, X)$
Waiting Strategy $A_{EoS}(X)$

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs

The total time of $A_{EoS}(X) = \begin{cases} W + E, & \text{if } W \leq X \\ X + S, & \text{if } W > X \end{cases}$
Waiting Strategy $\mathcal{A}_{EoS}(X)$

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs

The total time of $\mathcal{A}_{EoS}(X) = \begin{cases} W + E, & \text{if } W \leq X \\ X + S, & \text{if } W > X \end{cases}$

Let the ratio: $R(W, X) = \begin{cases} \frac{W+E}{\min\{S,W+E\}}, & \text{if } W \leq X \\ \frac{X+S}{\min\{S,W+E\}}, & \text{if } W > X \end{cases}$

How will Adversary choose W? How will you choose X in response?

Let the competitive ratio: $\alpha(\mathcal{A}_{EoS}) = \min X_{\max} R(W, X)$
Waiting Strategy $A_{EoS}(X)$

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs

The total time of $A_{EoS}(X) = \begin{cases} W + E, & \text{if } W \leq X \\ X + S, & \text{if } W > X \end{cases}$

Let the ratio: $R(W, X) = \begin{cases} \frac{W + E}{\min\{S, W + E\}}, & \text{if } W \leq X \\ \frac{X + S}{\min\{S, W + E\}}, & \text{if } W > X \end{cases}$

How will Adversary choose W? How will you choose X in response?
Waiting Strategy $A_{EoS}(X)$

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs

The total time of $A_{EoS}(X) = \begin{cases} W + E, & \text{if } W \leq X \\ X + S, & \text{if } W > X \end{cases}$

Let the ratio: $R(W, X) = \begin{cases} \frac{W + E}{\min\{S, W + E\}}, & \text{if } W \leq X \\ \frac{X + S}{\min\{S, W + E\}}, & \text{if } W > X \end{cases}$

How will Adversary choose W? How will you choose X in response?

Let the **competitive ratio** be:

$$\alpha(A_{EoS}) = \min_X \max_W R(W, X)$$
The competitive ratio of A_{EoS} is obtained by optimizing X and assuming Adversary maximizes $R(W, X)$ by choosing $W = X + \epsilon$ for a very small positive ϵ:

$$\alpha(A_{EoS}) = \min_X \max_W R(W, X) = \min_X \frac{X + S}{\min\{S, X + E\}} = 2 - \frac{E}{S}$$

where the minimum value is at $X = S - E$
Theorem

$A_{EoS}(X)$ has the best possible competitive ratio for any online algorithms

Proof:

- Every online algorithm can be expressed as a strategy played on a zero-sum game against Adversary
- Suppose the maximum time that an online algorithm stops waiting is X
Theorem

\(A_{\text{EoS}}(X) \) has the best possible competitive ratio for any online algorithms

Proof:

- Every online algorithm can be expressed as a strategy played on a zero-sum game against Adversary.
- Suppose the maximum time that an online algorithm stops waiting is \(X \).
- Every online algorithm can be expressed by \(A_{\text{EoS}}(X) \).
- Then the competitive ratio of every online algorithm is lower bounded by:

\[
\min_X \max_W R(W, X) \geq \min_X \alpha(A_{\text{EoS}}(X))
\]
Online Decision Problems

- **Online decision problems:**
 - Problems are *not* always solved in one shot, but progressively and continually
 - Consider this decision problem
 - Input is revealed gradually as time evolves
 - A decision has to be made from time to time, given partial input
 - But an optimal decision depends on all future input (so cannot make optimal decision)
 - Decisions made cannot be retracted
 - Examples:
 - How much should a student learn to pass an exam?
 - When should we sell/buy in stock markets?
 - How to find your true love?
Online Decision Problems

- **Online decision problems:**
 - Problems are *not* always solved in one shot, but progressively and continually
 - Consider this decision problem
 - Input is revealed gradually as time evolves
 - A decision has to be made from time to time, given partial input
 - But an optimal decision depends on all future input (so cannot make optimal decision)
 - Decisions made cannot be retracted
 - Examples:
 - How much should a student learn to pass an exam?
 - When should we sell/buy in stock markets?
 - How to find your true love?

- **Online algorithms:**
 - Solve online decision problems without knowing the entire input from the start to the end

- **Motto:** Always prepare for the worst-case scenario; if it is the best you’ll win anyway
Let’s Apply Online Algorithms to Financial Market Trading
Online Decision Problem #2: Trading in Financial Markets

- When should you sell/buy in stock markets without knowing the future of market prices?
- Trading in financial market is an online decision problem
 - Goal: Want to sell at the highest price, or buy at the lowest price
- Decisions need to be made without complete future information
- How do we know if the current price is the highest/lowest?
- Probabilistic analysis
 - Need to model risk and uncertainty of future price fluctuations
- Competitive online algorithms
 - Risk-less, guaranteeing the worst case performance
1-Max Search

Definition (1-Max Search)

- Give a sequence of prices \((p_1, p_2, \ldots, p_T)\) over time
- **Goal:** Decide whether to sell at price \(p_t\) at current time \(t\), or wait for the next time at an unknown price

Unknown:
- Assume no knowledge of future price \(p_t\)

Known:
- Price range \(m \leq p_t \leq M\) for all \(t = 1, \ldots, T\)
- Deadline: If not sold before \(T\), then will be forced to sell at \(p_T\)
1-Max Search

Definition (1-Max Search)

- Give a sequence of prices \((p_1, p_2, ..., p_T)\) over time
- Goal: Decide whether to sell at price \(p_t\) at current time \(t\),
or wait for the next time at an unknown price
- **Unknown:**
 - Assume no knowledge of future price \(p_t\)
- **Known:**
 - Price range \(m \leq p_t \leq M\) for all \(t = 1, ..., T\)
 - Deadline: If not sold before \(T\), then will be forced to sell at \(p_T\)

- Offline optimal solution:
 - Pick the time to sell at the highest price: \(t_{\text{max}} = \arg \max \{p_t : t = 1, ..., T\}\)
- Online algorithm: How?
1-Max Search

Threshold Selling Algorithm $A_{1\max}(\hat{p})$

- Repeat
 - If the current price $p_t \geq \hat{p}$, then sell and exit
 - Else wait for the next price p_{t+1}
- Until $t = T$ then sell at p_T
Threshold Selling Algorithm $A_{1\text{max}}(\hat{p})$

- Repeat
 - If the current price $p_t \geq \hat{p}$, then sell and exit
 - Else wait for the next price p_{t+1}
- Until $t = T$ then sell at p_T

Lemma

Setting $\hat{p} = \sqrt{Mm}$ in $A_{1\text{max}}(\hat{p})$ achieves the best competitive ratio $= \sqrt{\frac{M}{m}}$

Proof:
Threshold Selling Algorithm $A_{1\text{max}}(\hat{p})$

- Repeat
 - If the current price $p_t \geq \hat{p}$, then sell and exit
 - Else wait for the next price p_{t+1}
- Until $t = T$ then sell at p_T

Lemma

Setting $\hat{p} = \sqrt{Mm}$ in $A_{1\text{max}}(\hat{p})$ achieves the best competitive ratio $= \sqrt{\frac{M}{m}}$

Proof:

- Knowing \hat{p}, Adversary has two options:
 1. Case 1: Make $A_{1\text{max}}$ sell at \hat{p}
 2. Case 2: Make $A_{1\text{max}}$ sell at p_T
1-Max Search

Proof:

- Knowing \(\hat{p} \), Adversary has two options:
 1. Case 1: Make \(A_{1\text{max}} \) sell at \(\hat{p} \)
 2. Case 2: Make \(A_{1\text{max}} \) sell at \(p_T \)
1-Max Search

Proof:

- Knowing \hat{p}, Adversary has two options:
 1. Case 1: Make $A_{1_{\text{max}}}$ sell at \hat{p}
 2. Case 2: Make $A_{1_{\text{max}}}$ sell at p_T

- The competitive ratio is
 1. Case 1: $\frac{M}{\hat{p}}$ by price sequence $(\hat{p}, M, ...)$
 2. Case 2: $\frac{\hat{p}}{m}$ by price sequence $(\hat{p} - \epsilon, ..., m)$

- We optimize \hat{p} by minimizing the following value:

$$\min_{\hat{p}} \max\left\{ \frac{M}{\hat{p}}, \frac{\hat{p}}{m} \right\}$$
1-Max Search

Proof:

- Knowing \hat{p}, Adversary has two options:
 1. Case 1: Make $A_{1\text{max}}$ sell at \hat{p}
 2. Case 2: Make $A_{1\text{max}}$ sell at p_T

- The competitive ratio is
 1. Case 1: $\frac{M}{\hat{p}}$ by price sequence $(\hat{p}, M, ...)$
 2. Case 2: $\frac{\hat{p}}{m}$ by price sequence $(\hat{p} - \epsilon, ..., m)$

- We optimize \hat{p} by minimizing the following value:

$$\min_{\hat{p}} \max \left\{ \frac{M}{\hat{p}}, \frac{\hat{p}}{m} \right\}$$

- Note that $\frac{M}{\hat{p}}$ is decreasing in \hat{p}; $\frac{\hat{p}}{m}$ is increasing in \hat{p}
Proof:

- Knowing \hat{p}, Adversary has two options:
 1. Case 1: Make $A_{1\text{max}}$ sell at \hat{p}
 2. Case 2: Make $A_{1\text{max}}$ sell at p_T

- The competitive ratio is
 1. Case 1: $M \frac{\hat{p}}{\hat{p}}$ by price sequence $(\hat{p}, M, ...)$
 2. Case 2: $\frac{\hat{p}}{m}$ by price sequence $(\hat{p} - \epsilon, ..., m)$

- We optimize \hat{p} by minimizing the following value:

$$\min_{\hat{p}} \max \{ \frac{M}{\hat{p}}, \frac{\hat{p}}{m} \}$$

- Note that $M \frac{\hat{p}}{\hat{p}}$ is decreasing in \hat{p}; $\frac{\hat{p}}{m}$ is increasing in \hat{p}

- The optimal setting: $\frac{M}{\hat{p}} = \frac{\hat{p}}{m} \implies \hat{p} = \sqrt{Mm}$
1-Min Search

- Need to buy at as low price as possible

Threshold Buying Algorithm $\mathcal{A}_{1\text{min}}(\hat{p})$

- Repeat
 - If the current price $p_t \leq \hat{p}$, then buy and exit
 - Else wait for the next price p_{t+1}
- Until $t = T$ then buy at p_T
1-Min Search

- Need to buy at as low price as possible

Threshold Buying Algorithm $\mathcal{A}_{1\min}(\hat{p})$

- Repeat
 - If the current price $p_t \leq \hat{p}$, then buy and exit
 - Else wait for the next price p_{t+1}
- Until $t = T$ then buy at p_T

Lemma

Setting $\hat{p} = \sqrt{Mm}$ in $\mathcal{A}_{1\min}(\hat{p})$ achieves the best competitive ratio $= \sqrt{\frac{M}{m}}$
k-Max Search

Definition (k-Max Search)

- **Goal:** Need to sell k items, only one item sold at each time
- **Known:**
 - Price range $m \leq p_t \leq M$
 - Deadline: If i items unsold before $T - i + 1$, then will be forced to sell all at (p_{T-i+1}, \ldots, p_T)
- **Offline optimal solution:**
 - Pick the k highest prices
- **Online algorithm:** How?
- **We extend from $A_{1\text{max}}$ to $A_{k\text{max}}$ with k threshold selling prices**
Definition (k-Min Search)

- Goal: Need to buy k items, only one item bought at each time
- We extend from $A_{1\text{min}}$ to $A_{k\text{min}}$ with k threshold buying prices
- Let \hat{p}_i be the threshold buying price of the i-th item
- $\hat{p}_1 \geq \hat{p}_2 \geq \ldots \geq \hat{p}_k$
Goal: Find your true love by dating a stream of candidates

Suppose you estimate that you will have n dates over the time

- Your true love will be the best person out of the n candidates
Goal: Find your true love by dating a stream of candidates

Suppose you estimate that you will have n dates over the time

- Your true love will be the best person out of the n candidates

Rules:

- You can only date one person at a time (no cheating allowed 😥)
- You have to decide whether either you will
 - Marry the current candidate
 - Or break up with the current candidate to date the next (unknown) candidate
- Broken-up relationship can’t be rekindled (need to move on from past relationships 😭)
Online Decision Problem #3: Online Dating Problem

- **Goal:** Find your true love by dating a stream of candidates
- **Suppose you estimate that you will have** n **dates over the time**
 - Your true love will be the best person out of the n candidates
- **Rules:**
 - You can only date one person at a time (no cheating allowed 😱)
 - You have to decide whether either you will
 - Marry the current candidate
 - Or break up with the current candidate to date the next (unknown) candidate
 - Broken-up relationship can’t be rekindled (need to move on from past relationships ❤️)
- **Dating is definitely an “online” decision problem**
Reference Materials

- A Course in “Advanced Algorithms”