Fun of Online Algorithms Enrichment Lecture

Sid Chi-Kin Chau

Australian National University

sid.chau@anu.edu.au

November 5, 2022

Uncertain future? Help! 🔞

• There is always uncertainty in future. How to cope with uncertain future?

Online Decision Problem #1: Elevator or Stairs \overline{X}

Elevator or Stairs

- You can either use the elevator but need to wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs, where S > E

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 3/28

Online Decision Problem #1: Elevator or Stairs \(\square\)

Elevator or Stairs

- You can either use the elevator but need to wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs, where S > E

• If you are an oracle **(i.e.**, you can predict the future), what will you do?

3/28

Fun of Online Algorithms Sid Chau (ANU) November 5, 2022

Online Decision Problem #1: Elevator or Stairs \overline{X}

Elevator or Stairs

- You can either use the elevator but need to wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs, where S > E

- If you are an oracle **(i.e.**, you can predict the future), what will you do?
- If the waiting time W > S E, then take the stairs, else wait for the elevator
- This is called the **offline optimal solution**

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 3/28

Online Decision Problem #1: Elevator or Stairs \overline{X}

Elevator or Stairs

- You can either use the elevator but need to wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs, where S > E

- If you are an oracle **(** (i.e., you can predict the future), what will you do?
- If the waiting time $W \geq S E$, then take the stairs, else wait for the elevator
- This is called the offline optimal solution
- But you are not an oracle, you don't know the true W, how long should you wait for the elevator?

Fun of Online Algorithms Sid Chau (ANU) November 5, 2022 3/28

Online Decision Problem #1: Elevator or Stairs \(\sqrt{2} \)

Elevator or Stairs

- You can either use the elevator but need to wait, or take the stairs
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs, where S > E

- If you are an oracle **(** (i.e., you can predict the future), what will you do?
- If the waiting time W > S E, then take the stairs, else wait for the elevator
- This is called the offline optimal solution
- But you are not an oracle, you don't know the true W, how long should you wait for the elevator? This is called an **online decision problem**

3/28

Fun of Online Algorithms November 5, 2022 Sid Chau (ANU)

Online Decision Problem #1: Elevator or Stairs \overline{X}

Elevator or Stairs

- You can either use the elevator and wait, or take the stairs.
- It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs

4 / 28

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022

Online Decision Problem #1: Elevator or Stairs \(\square\)

Elevator or Stairs

- You can either use the elevator and wait, or take the stairs.
- \bullet It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs

Waiting Strategy

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs

Fun of Online Algorithms November 5, 2022 Sid Chau (ANU) 4/28

Online Decision Problem #1: Elevator or Stairs X

Elevator or Stairs

- You can either use the elevator and wait, or take the stairs.
- \bullet It takes E mins to get to your floor by elevator (once it comes)
- But the waiting time for elevator is unknown
- It takes S mins by stairs

Waiting Strategy

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs
- How do we choose X?
- Is there a way to systematically analyze the waiting strategy with respect to X?

Fun of Online Algorithms

Imagine Playing Chess with Adversary

Playing a Zero-sum Game with Adversary

- ullet Suppose E=1 and S=5
- Let the offline optimal total time be Opt, and the online total time be Online
- Let the ratio be Online Opt
- You can choose X either X=2 or X=5

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 6/28

Playing a Zero-sum Game with Adversary

- Suppose E=1 and S=5
- Let the offline optimal total time be Opt, and the online total time be Online
- Let the ratio be Online Opt
- You can choose X either X=2 or X=5
- ullet In general, what X will you choose to minimize the ratio between Online and Opt?

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 7/28

Waiting Strategy $\mathcal{A}_{\mathsf{EoS}}(X)$

- ullet Wait at most X mins for the elevator
- ullet If elevator does not come in X mins, then take the stairs

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 8 / 28

Waiting Strategy $\mathcal{A}_{\mathsf{EoS}}(X)$

- Wait at most X mins for the elevator
- ullet If elevator does not come in X mins, then take the stairs

$$\bullet \ \ \text{The total time of} \ \mathcal{A}_{\mathsf{EoS}}(X) = \begin{cases} W+E, & \text{if} \ W \leq X \\ X+S, & \text{if} \ W > X \end{cases}$$

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 8 / 28

Waiting Strategy $\mathcal{A}_{EoS}(X)$

- Wait at most X mins for the elevator
- ullet If elevator does not come in X mins, then take the stairs
- $\bullet \ \ \text{The total time of} \ \mathcal{A}_{\mathsf{EoS}}(X) = \begin{cases} W+E, & \text{if} \ W \leq X \\ X+S, & \text{if} \ W > X \end{cases}$
- $\bullet \text{ Let the ratio: } \mathbf{R}(W,X) = \begin{cases} \frac{W+E}{\min\{S,W+E\}}, & \text{if } W \leq X \\ \frac{X+S}{\min\{S,W+E\}}, & \text{if } W > X \end{cases}$

8 / 28

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022

Waiting Strategy $\mathcal{A}_{\mathsf{EoS}}(X)$

- Wait at most X mins for the elevator
- ullet If elevator does not come in X mins, then take the stairs
- $\bullet \ \, \text{The total time of} \,\, \mathcal{A}_{\text{EoS}}(X) = \begin{cases} W+E, & \text{if} \,\, W \leq X \\ X+S, & \text{if} \,\, W > X \end{cases}$
- $\bullet \text{ Let the ratio: } \mathbf{R}(W,X) = \begin{cases} \frac{W+E}{\min\{S,W+E\}}, & \text{if } W \leq X \\ \frac{X+S}{\min\{S,W+E\}}, & \text{if } W > X \end{cases}$
- How will Adversary choose W? How will you choose X in response?

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 8/28

Waiting Strategy $\mathcal{A}_{FoS}(X)$

- Wait at most X mins for the elevator
- If elevator does not come in X mins, then take the stairs
- $\bullet \ \, \text{The total time of} \, \, \mathcal{A}_{\text{EoS}}(X) = \begin{cases} W+E, & \text{if} \, \, W \leq X \\ X+S, & \text{if} \, \, W > X \end{cases}$
- Let the ratio: $\mathbf{R}(W,X) = \begin{cases} \frac{W+E}{\min\{S,W+E\}}, & \text{if } W \leq X \\ \frac{X+S}{\max\{S,W+E\}}, & \text{if } W > X \end{cases}$
- How will Adversary choose W? How will you choose X in response?
- Let the **competitive ratio** be:

$$\alpha(\mathcal{A}_{\mathsf{EoS}}) = \min_X \max_W \ \mathsf{R}(W,X)$$

8 / 28

• The competitive ratio of $\mathcal{A}_{\mathsf{EoS}}$ is obtained by optimizing X and assuming Adversary maximizes $\mathsf{R}(W,X)$ by choosing $W=X+\epsilon$ for a very small positive ϵ :

$$\alpha(\mathcal{A}_{\mathsf{EoS}}) = \min_{X} \max_{W} \ \mathtt{R}(W, X) = \min_{X} \ \frac{X + S}{\min\{S, X + E\}} = 2 - \frac{E}{S}$$

where the minimum value is at X = S - E

4 □ ト 4 □ ト 4 亘 ト 4 亘 り Q ○

9/28

Theorem

 $\mathcal{A}_{\mathsf{EoS}}(X)$ has the best possible competitive ratio for any online algorithms

Proof:

- Every online algorithm can be expressed as a strategy played on a zero-sum game against Adversary
- \bullet Suppose the maximum time that an online algorithm stops waiting is X

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 10 / 28

Theorem

 $\mathcal{A}_{\mathsf{EoS}}(X)$ has the best possible competitive ratio for any online algorithms

Proof:

- Every online algorithm can be expressed as a strategy played on a zero-sum game against Adversary
- ullet Suppose the maximum time that an online algorithm stops waiting is X
- \bullet Every online algorithm can be expressed by $\mathcal{A}_{\mathsf{EoS}}(X)$
- Then the competitive ratio of every online algorithm is lower bounded by:

$$\min_{X} \max_{W} \ \mathrm{R}(W,X) \geq \min_{X} \alpha(\mathcal{A}_{\mathsf{EoS}}(X))$$

10 / 28

Online Decision Problems

- Online decision problems:
 - ▶ Problems are *not* always solved in one shot, but progressively and continually
 - Consider this decision problem
 - ★ Input is revealed gradually as time evolves
 - ★ A decision has to be made from time to time, given partial input
 - But an optimal decision depends on all future input (so cannot make optimal decision)
 - ★ Decisions made cannot be retracted
 - Examples:
 - ★ How much should a student learn to pass an exam?
 - ★ When should we sell/buy in stock markets?
 - ★ How to find your true love?

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 11/28

Online Decision Problems

- Online decision problems:
 - ▶ Problems are *not* always solved in one shot, but progressively and continually
 - Consider this decision problem
 - ★ Input is revealed gradually as time evolves
 - ★ A decision has to be made from time to time, given partial input
 - But an optimal decision depends on all future input (so cannot make optimal decision)
 - ★ Decisions made cannot be retracted
 - Examples:
 - ★ How much should a student learn to pass an exam?
 - ★ When should we sell/buy in stock markets?
 - ★ How to find your true love?
- Online algorithms:
 - ▶ Solve online decision problems without knowing the entire input from the start to the end
- Motto: Always prepare for the worst-case scenario; if it is the best you'll win anyway

Online Decision Problem #2: Trading in Financial Markets

- When should you sell/buy in stock markets without knowing the future of market prices?
- Trading in financial market is an online decision problem
 - ▶ Goal: Want to sell at the highest price, or buy at the lowest price
- Decisions need to be made without complete future information
- How do we know if the current price is the highest/lowest?
- Probabilistic analysis
 - ▶ Need to model risk and uncertainty of future price fluctuations
- Competitive online algorithms
 - Risk-less, guaranteeing the worst case performance

Fun of Online Algorithms November 5, 2022 Sid Chau (ANU) 13 / 28

Definition (1-Max Search)

- Give a sequence of prices $(p_1, p_2, ..., p_T)$ over time
- ullet Goal: Decide whether to sell at price p_t at current time t, or wait for the next time at an unknown price
- Unknown:
 - Assume no knowledge of future price p_t
- Known:
 - Price range $m \leq p_t \leq M$ for all t = 1, ..., T
 - lacktriangle Deadline: If not sold before T, then will be forced to sell at p_T

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 14 / 28

Definition (1-Max Search)

- Give a sequence of prices $(p_1, p_2, ..., p_T)$ over time
- ullet Goal: Decide whether to sell at price p_t at current time t, or wait for the next time at an unknown price
- Unknown:
 - lacktriangle Assume no knowledge of future price p_t
- Known:
 - Price range $m \leq p_t \leq M$ for all t = 1, ..., T
 - ightharpoonup Deadline: If not sold before T, then will be forced to sell at p_T
- Offline optimal solution:
 - Pick the time to sell at the highest price: $t_{max} = \arg \max\{p_t : t = 1, ..., T\}$
- Online algorithm: How?

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 14 / 28

Threshold Selling Algorithm $\mathcal{A}_{1\text{max}}(\hat{p})$

- Repeat
 - ▶ If the current price $p_t \ge \hat{p}$, then sell and exit
- ightharpoonup Else wait for the next price p_{t+1}
- ullet Until t=T then sell at p_T

15 / 28

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022

Threshold Selling Algorithm $\mathcal{A}_{1\text{max}}(\hat{p})$

- Repeat
 - ▶ If the current price $p_t \ge \hat{p}$, then sell and exit
- lacktriangle Else wait for the next price p_{t+1}
- Until t = T then sell at p_T

Lemma

Setting
$$\hat{p}=\sqrt{Mm}$$
 in $\mathcal{A}_{1\mathsf{max}}(\hat{p})$ achieves the best competitive ratio $=\sqrt{rac{M}{m}}$

Proof:

15/28

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022

Threshold Selling Algorithm $\mathcal{A}_{1\mathsf{max}}(\hat{p})$

- Repeat
 - If the current price $p_t \geq \hat{p}$, then sell and exit
- ightharpoonup Else wait for the next price p_{t+1}
- Until t = T then sell at p_T

Lemma

Setting
$$\hat{p}=\sqrt{Mm}$$
 in $\mathcal{A}_{1\mathsf{max}}(\hat{p})$ achieves the best competitive ratio $=\sqrt{rac{M}{m}}$

Proof:

- Knowing \hat{p} , Adversary has two options:
 - **1** Case 1: Make $\mathcal{A}_{1\mathsf{max}}$ sell at \hat{p}
 - 2 Case 2: Make $\mathcal{A}_{1\text{max}}$ sell at p_T

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 15 / 28

Proof:

• Knowing \hat{p} , Adversary has two options:

• Case 1: Make $\mathcal{A}_{1\mathsf{max}}$ sell at \hat{p}

2 Case 2: Make $\mathcal{A}_{1\text{max}}$ sell at p_T

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 16 / 28

Proof:

- Knowing \hat{p} , Adversary has two options:
 - Case 1: Make $\mathcal{A}_{1\mathsf{max}}$ sell at \hat{p}
 - ② Case 2: Make \mathcal{A}_{1max} sell at p_T
- The competitive ratio is
 - ① Case 1: $\frac{M}{\hat{p}}$ by price sequence $(\hat{p}, M, ...)$
 - 2 Case 2: $\frac{\hat{p}}{m}$ by price sequence $(\hat{p}-\epsilon,...,m)$
- We optimize \hat{p} by minimizing the following value:

$$\min_{\hat{p}} \ \max\{\frac{M}{\hat{p}}, \frac{\hat{p}}{m}\}$$

16 / 28

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022

Proof:

- Knowing \hat{p} , Adversary has two options:
 - Case 1: Make A_{1max} sell at \hat{p}
 - 2 Case 2: Make $\mathcal{A}_{1\text{max}}$ sell at p_T
- The competitive ratio is
 - ① Case 1: $\frac{M}{\hat{p}}$ by price sequence $(\hat{p}, M, ...)$
 - ② Case 2: $\frac{\hat{p}}{m}$ by price sequence $(\hat{p} \epsilon, ..., m)$
- We optimize \hat{p} by minimizing the following value:

$$\min_{\hat{p}} \ \max\{\frac{M}{\hat{p}}, \frac{\hat{p}}{m}\}$$

• Note that $\frac{M}{\hat{p}}$ is decreasing in $\hat{p}; \; \frac{\hat{p}}{m}$ is increasing in \hat{p}

16 / 28

November 5, 2022

Sid Chau (ANU) Fun of Online Algorithms

Proof:

- Knowing \hat{p} , Adversary has two options:
 - Case 1: Make A_{1max} sell at \hat{p}
 - 2 Case 2: Make $\mathcal{A}_{1\text{max}}$ sell at p_T
- The competitive ratio is
 - ① Case 1: $\frac{M}{\hat{p}}$ by price sequence $(\hat{p}, M, ...)$
 - ② Case 2: $\frac{\hat{p}}{m}$ by price sequence $(\hat{p} \epsilon, ..., m)$
- We optimize \hat{p} by minimizing the following value:

$$\min_{\hat{p}} \ \max\{\frac{M}{\hat{p}}, \frac{\hat{p}}{m}\}$$

- Note that $\frac{M}{\hat{p}}$ is decreasing in \hat{p} ; $\frac{\hat{p}}{m}$ is increasing in \hat{p}
- \bullet The optimal setting: $\frac{M}{\hat{p}}=\frac{\hat{p}}{m} \ \Rightarrow \ \hat{p}=\sqrt{Mm}$

Sid Chau (ANU) Fun of Online Algorithms

16 / 28

1-Min Search

• Need to buy at as low price as possible

Threshold Buying Algorithm $\mathcal{A}_{1min}(\hat{p})$

- Repeat
 - ▶ If the current price $p_t \leq \hat{p}$, then buy and exit
 - lacktriangle Else wait for the next price p_{t+1}
- ullet Until t=T then buy at p_T

17 / 28

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022

1-Min Search

• Need to buy at as low price as possible

Threshold Buying Algorithm $\mathcal{A}_{1\min}(\hat{p})$

- Repeat
 - If the current price $p_t \leq \hat{p}$, then buy and exit
 - Else wait for the next price p_{t+1}
- ullet Until t=T then buy at p_T

Lemma

Setting
$$\hat{p}=\sqrt{Mm}$$
 in $\mathcal{A}_{1\text{min}}(\hat{p})$ achieves the best competitive ratio $=\sqrt{\frac{M}{m}}$

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 17 / 28

Definition (k-Max Search)

- Goal: Need to sell k items, only one item sold at each time
- Known:
 - Price range $m \leq p_t \leq M$
 - Deadline: If i items unsold before T-i+1, then will be forced to sell all at $(p_{T-i+1},...,p_T)$
- Offline optimal solution:
 - Pick the k highest prices
- Online algorithm: How?
- We extend from $A_{1\text{max}}$ to $A_{k\text{max}}$ with k threshold selling prices

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 18 / 28

k-Min Search

Definition (k-Min Search)

- ullet Goal: Need to buy k items, only one item bought at each time
- We extend from $A_{1\min}$ to $A_{k\min}$ with k threshold buying prices
- Let \hat{p}_i be the threshold buying price of the *i*-th item
- $\hat{p}_1 \ge \hat{p}_2 \ge ... \ge \hat{p}_k$

19 / 28

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022

Online Decision Problem #3: Online Dating Problem **9**

- Goal: Find your true love by dating a stream of candidates
- ullet Suppose you estimate that you will have n dates over the time
 - ▶ Your true love will be the best person out of the *n* candidates

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022 20 / 28

Online Decision Problem #3: Online Dating Problem **9**

- Goal: Find your true love by dating a stream of candidates
- Suppose you estimate that you will have n dates over the time
 - ▶ Your true love will be the best person out of the *n* candidates
- Rules:
 - You can only date one person at a time (no cheating allowed <a>\textstyle{\
 - You have to decide whether either you will
 - ★ Marry the current candidate
 - ★ Or break up with the current candidate to date the next (unknown) candidate
 - Broken-up relationship can't be rekindled (need to move on from past relationships)

Online Decision Problem #3: Online Dating Problem **9**

- Goal: Find your true love by dating a stream of candidates
- Suppose you estimate that you will have n dates over the time
 - ▶ Your true love will be the best person out of the *n* candidates
- Rules:
 - You can only date one person at a time (no cheating allowed <a>\textstyle{\
 - You have to decide whether either you will
 - ★ Marry the current candidate
 - ★ Or break up with the current candidate to date the next (unknown) candidate
 - Broken-up relationship can't be rekindled (need to move on from past relationships)

20 / 28

Dating is definitely an "online" decision problem

Fun of Online Algorithms November 5, 2022 Sid Chau (ANU)

Reference Materials

- A Course in "Advanced Algorithms"
 - https://users.cecs.anu.edu.au/~sid.chau/teaching.html

21 / 28

Sid Chau (ANU) Fun of Online Algorithms November 5, 2022