
Verifying the uncountable: LTL verification in
continuous-time

Iman Shames

CIICADA Lab, College of Engineering and Computer Science, ANU

Foundations of Computing/Computer Science

D Selvaratnam, M Cantoni, J M Davoren, I Shames, “Sampling polynomial trajectories for LTL

verification”, Theoretical Computer Science, Volume 897, 2022, Pages 135-163
1 / 28

Outline

Formal Verification – Trusting an Autonomous System

Temporal Logic – Writing Task Specifications

PolyTrace Algorithm – Checking Task Specifications

Examples and Conclusions

2 / 28

Formal Verification – Trusting an Autonomous System

Temporal Logic – Writing Task Specifications

PolyTrace Algorithm – Checking Task Specifications

Examples and Conclusions

Why verify?

• Path planning is extremely hard

• Approximations make it tractable

• Some requirements must be relaxed for planning

• Uncertainty: plan for expected value, but verify against worst case?

Formal verification for checking a plan against requirements that path planner may not
be able to guarantee

formal verification︷ ︸︸ ︷
Trusted Autonomous︸ ︷︷ ︸

path planning

Systems

3 / 28

A disclaimer from the 1662 revision of the Book of Common Prayer1

And having thus endeavoured to discharge duties in this weighty affair, as in the sight
of God, and to approve our sincerity therein (so far as lay in us) to the consciences of
all men; although we know it impossible (in such variety of apprehension, humours
and interests, as are in the world) to please all; nor can expect the men of factious,
peevish, and perverse spirits should be satisfied with anything that can be done in
this kind by other than themselves. . .

• One might find the lack of optimism disheartening, but one cannot fault the
aforementioned preface’s authors’ realism.

• I feel the same as these authors.

1I have found this in the outstanding book Surpassing Wonder: The Invention of the Bible and the
Talmuds by Donald Harman Akenson

4 / 28

Envisaged architecture

Path planner Verification
Motion

Controller

Task specification: requirements & objectives

plan pass

fail

Interaction between modules

Some interdependence between planning and verification
Temporal logic: mathematical language enabling precise Task specifications

5 / 28

Formal Verification – Trusting an Autonomous System

Temporal Logic – Writing Task Specifications

PolyTrace Algorithm – Checking Task Specifications

Examples and Conclusions

Temporal Logic

Formal mathematical language

• Linear temporal logic (LTL)

• Signal Temporal Logic (STL) ← explicit timing bounds

Used in computer science to specify complex software & hardware requirements
Captures discrete objectives with logical dependencies that may change over time
{and, or, not, implies, always, eventually, until }

Verification output is binary: pass or fail (robustness notions do exist)

6 / 28

Seek + Avoid:

ϕ := R0 ∧ ♢R7 ∧ ♢R10 ∧□¬R4

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

7 / 28

∧ = and
♢ = eventually
□ = always
¬ = not

Path planning:

ϕ := ((((R0UR14)UR3)UR4)UR8)U□R2

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

8 / 28

U = until
□ = always

Persistent Surveillance + Avoid:

ϕ := □(♢R0 ∧ ♢R6 ∧ ♢R13 ∧ ♢R11) ∧□¬(R4 ∨R12)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

9 / 28

□ = always
♢ = eventually
∧ = and
¬ = not
∨ = or

Paths

State: x := (x, y, z, v, φ, ρ) ∈ R6 ←state space
x, y, z = position coordinates
v = speed
φ = fuel level
ρ = “risk”
Path: r : [0, L]→ R6,

r(s) =
[
x(s) y(s) z(s) v(s) φ(s) ρ(s)

]⊤
Describes continuous evolution of key system variables

For more info on STL + Risk see:

S. Safaoui, L. Lindemann, D. V. Dimarogonas, I. Shames and T. H. Summers, “Control Design for

Risk-Based Signal Temporal Logic Specifications,” in IEEE Control Systems Letters, vol. 4, no. 4, pp.

1000-1005, Oct. 2020, doi: 10.1109/LCSYS.2020.2998543.

10 / 28

Encoding objectives and constraints

Constraints and discrete objectives are well suited to temporal logic verification.

x := (x, y, z, v, φ, ρ)

Home base: Rhome = {x ∈ R6 | (x, y) ∈ [0, 1]2}
Full tank: Rfuel = {x ∈ R6 | φ ≥ 0.95}
Low-risk Mode: Rlow−risk = {x ∈ R6 | ρ ≤ ϵ}
Over-speed: Roverspeed = {x ∈ R6 | |v| > Vmax}
Unsafe territory: Runsafe = {x ∈ R6 | (x, y) ∈ [−2, 3]× [7, 9]}
Specification:

Rfuel ∧□(¬Roverspeed ∧ (Runsafe → Rlow−risk)) ∧ ♢□Rhome

11 / 28

LTL Semantics

Alphabet: A = {R1, ..., RN}
R1, R2, ...RN ⊂ Rn may overlap and need not partition the space
An infinite word α maps discrete time steps to regions

α : N→ 2A

α(k) = {R1, R3} ← agent in regions R1 and R3 at time k
α(k + 1) = ∅ ← agent not in any regions at time k + 1
Satisfaction:

α |= ϕ ← LTL formula

Model Checking and Path Checking are two approaches to testing satisfacion

12 / 28

Model Checking

A model serves as a finite representation of its set of output words

state machines, transition systems, state-space, transfer functions

Model
Input Output

Model checking verifies whether every output satisfies ϕ

• exhaustive certificate

• finite transitions systems are decidable (software models)

Downsides:

• computationally expensive

• infinite state models usually undecidable

• often overkill

13 / 28

Path Checking

Focus on checking a single word: α |= ϕ
Need a finite representation of the words we want to check

• variant of LTL for finite words

• lasso words: αβββ . . .

Advantages:

• Cheaper than model checking

• Possible for all paths of practical interest

• Often all you need for online decision making

14 / 28

Problem Statement

Model checking the path planner is intractable
Path checking algorithms for discrete words exist
α : N→ 2A ← countable set
A robot residing in the physical universe has trajectories that are continuous paths
r : [0, L]→ Rn ← uncountable set
Goal: verification of continuous paths!

Planner
Trace

Generator
Path

Checker

continuous discrete pass/fail

Verification Module

off-the-shelf

trace is a discrete word capturing all transitions taken by continuous path

15 / 28

Formal Verification – Trusting an Autonomous System

Temporal Logic – Writing Task Specifications

PolyTrace Algorithm – Checking Task Specifications

Examples and Conclusions

How to generate a trace?

Uniform Sampling: Inefficient. No guarantees. Is there a better way to sample?

16 / 28

How to generate a trace?

Uniform Sampling: Inefficient. No guarantees. Is there a better way to sample?

16 / 28

How to generate a trace?

Uniform Sampling: Inefficient. No guarantees. Is there a better way to sample?

16 / 28

How to generate a trace?

Uniform Sampling: Inefficient. No guarantees. Is there a better way to sample?
Key objective: we don’t want to keep sampling until the cows come home. . .

16 / 28

Geometry & Algebra of the Path

Path r : [0, L]→ R2

Between two waypoints s ∈ [sn, sn+1],

Example: r(s) =

[
r1(s)
r2(s)

]
=

[
a3s

3 + a2s
2 + a1s+ a0

b3s
3 + b2s

2 + b1s+ b0

]
∈ R2

Semi-algebraic Region : Ri = {x ∈ R2 | gi(x) ≤ 0},

gi(x, y) = c1x
2 + c2y

2 + c3xy + c4x+ c5y + c6

• circles, ellipses, hyperbolae + intersections & unions

• straight lines, walls, grid cells

Composition:
gi ◦ r(s) = gi(r1(s), r2(s))

is a 6th order univariate polynomial

Roots of gi ◦ r correspond to boundary crossings!

17 / 28

Strategy

Every boundary crossing is a root of

P (s) =
∏
i

gi ◦ r(s).

For each segment [sn, sn+1], ← between two waypoints

1. Find the roots of P in [sn, sn+1] to get the boundary crossings

2. Sample on either side of each root (check sign of each gi ◦ r)

sn

sn+1

Abel-Ruffini Theorem: no general algebraic expression for roots of polynomials
of degree greater than 4!

18 / 28

Solution Component: Root Isolation Algorithms

Given any univariate polynomial p(s), a root isolation algorithm generates a set of
intervals such that

• each interval contains exactly one root of p

• every root of p is contained in an interval

s

g i
◦
r(
s)

Ri = {x ∈ Rn | gi(x) ≤ 0}

19 / 28

Isolated Points

sA

sB

r(s)

R1 R2

Types of isolated points:

• double crossing: g1 ◦ r(sA) = g2 ◦ r(sA) = 0

• bouncing: (g2 ◦ r)′(sB) = g2 ◦ r(sB) = 0

All isolated points are repeated roots of P =

M∏
i=1

gi ◦ r.

20 / 28

trace =
(
∅, {R1}, {R1, R2}︸ ︷︷ ︸

sA

, {R2}, ∅, {R2}︸ ︷︷ ︸
sB

, ∅
)

The trace information is
needed at isolated points!
We don’t know where they are
and approximate roots miss
transitions.

Isolated Point Conundrum

Observation function h : Rn → 2{R1,...,RM}

h(x) = {Ri | x ∈ Ri}

h ◦ r(s) samples path r : [0, L]→ Rn at point s ∈ [0, L]

Let P (s⋆) = 0. If (a, b) is an isolating interval for s⋆, then

h ◦ r(s⋆) = h ◦ r(a) ∪ {Ri | ∃s ∈ (a, b), gi ◦ r(s) = 0}

s⋆

a b

h ◦ r(s⋆) = {R1} ∪ {R1, R2}

21 / 28

Isolated Point Conundrum

Observation function h : Rn → 2{R1,...,RM}

h(x) = {Ri | x ∈ Ri}

h ◦ r(s) samples path r : [0, L]→ Rn at point s ∈ [0, L]

Let P (s⋆) = 0. If (a, b) is an isolating interval for s⋆, then

h ◦ r(s⋆) = h ◦ r(a) ∪ {Ri | ∃s ∈ (a, b), gi ◦ r(s) = 0}

s⋆

a b

h ◦ r(s⋆) = {R1} ∪ {R1, R2}

Just need root
existence test!

21 / 28

Descartes’ Rule of Signs

Let p(s) be a non-zero univariate polynomial, and n := deg(p). Then p has no roots
in (a, b) if and only if all the coefficients of

q(s) := (s+ 1)np

(
as+ b

s+ 1

)
have the same sign.

Computationally robust root existence test
derived from Descartes’ rule of signs
Arithmetic operations on the coefficients of p.
All the pieces are now in place.

22 / 28

Encyclopædia Britannica: René Descartes, National Library of Medicine

PolyTrace Algorithm

All boundary points are roots of

P (s) =
∏

i:gi◦r ̸=0

gi ◦ r(s).

All isolated points are roots of V = gcd(P, P ′)
For each segment [sn, sn+1]:

1. Use root isolation algorithm to sample between each root of P in [sn, sn+1]

2. If V has roots in [sn, sn+1], “sample at” isolated points via root existence method

Extracts repeated
roots of P

23 / 28

Formal Verification – Trusting an Autonomous System

Temporal Logic – Writing Task Specifications

PolyTrace Algorithm – Checking Task Specifications

Examples and Conclusions

Simulation: eyeball

Start
Ellipse 1
Ellipse 2
Ellipse 3
Ellipse 4
Ellipse 5
Crossing 6
Crossing 7
Bounce 8
Bounce 9

output={6, 7}, {6, 7, 8}, {6, 8},
{6, 8, 9}, {6, 8}, {4, 6, 8}, {6, 8},
{3, 6, 8}, {3, 6}, {1, 3, 6}, {1, 6}, {6},
{}, {7}, {6, 7}, {6}, {5, 6}, {6}, {6, 8},
{6}, {3, 6}, {1, 3, 6}, {1, 6}, {6}, {6, 7}

24 / 28

Simulation: nightmare

Start
Ellipse 1
Ellipse 2
Ellipse 3
Ellipse 4
Ellipse 5
Ellipse 6
Ellipse 7
Ellipse 8
Ellipse 9

Ellipse 10
Ellipse 11
Ellipse 12
Ellipse 13
Ellipse 14
Ellipse 15
Ellipse 16
Ellipse 17
Ellipse 18
Ellipse 19

Ellipse 20
Crossing 21
Crossing 22
Crossing 23
Crossing 24
Crossing 25
Crossing 26
Crossing 27
Crossing 28
Crossing 29

Crossing 30
Bounce 31
Bounce 32
Bounce 33
Bounce 34
Bounce 35
Bounce 36

25 / 28

Simulation: nightmare trace

Planner PolyTrace Path
Checker

continuous discrete pass/fail

26 / 28

A concrete example: chemical material drum recovery by a robot

Specification: φ := φC ∧ φG ∧ φI ∧ φD

• φC : permits the robot to make
contact with the surface of the drum

• φG: requires the robot to eventually
make contact with the drum, before
entering the target zone and
remaining there.

• φI : prohibits the robot from colliding
with the inner boundaries of the
obstacles and ‘unsafe’ zones

• φD: prohibits the robot from
colliding with the outer boundaries of
the obstacles and ‘unsafe’ zones from
the point of contact and recovery of
the drum -10 -5 0 5 10

-10

-5

0

5

10

Start
Oval 1
Oval 2
Exterior 3
Oval 4
Oval 5
Oval 6
Oval 7
Oval 8
Oval 9
Halfspace 10
Halfspace 11
Halfspace 12
Halfspace 13
Halfspace 14
Halfspace 15
Halfspace 16
Halfspace 17

27 / 28

Contributions

Theoretical:

• extend path checking to continuous paths

• topological conditions for lossless sampling

Algorithm:

• path checks arbitrary 2D/3D polynomial spline paths (e.g., minimum jerk, snap, . . .)

• no approximations

• general LTL (without next) requirements

• versatile region description: semi-algebraic sets

• polynomial time complexity: O(NM6)

A “robust” treatment: D Selvaratnam, M Cantoni, M Davoren, I Shames, ”MITL verification under

timing uncertainty.” FORMATS, pp. 136-152, 2022.

Acknowledgement: Trusted Autonomous System D-CRC, and all the smart people that I
have learned from through our interactions and collaborations.

28 / 28

	Formal Verification – Trusting an Autonomous System
	Temporal Logic – Writing Task Specifications
	PolyTrace Algorithm – Checking Task Specifications
	Examples and Conclusions

