

Probabilistic Logic Programming with Fusemate: Main Ideas and Recent Developments

Peter Baumgartner

CSIRO/Data61 (StatML) ANU CECC

About

- PhD in 1996 in Germany, on Automated Reasoning -
- NICTA 2005, CSIRO since 2014 _

Research Interest

Knowledge representation and reasoning **Designing inference systems** Applications

Recently

Probabilitistic Logic Programming (PLP) Combination with LLM (with Lachlan McGinness)

D61 Applications

Computer Factory

Taxi rides in NYC

Food supply chain

Beef supply chain

States - Transitions - Uncertainty

Factory supply chain

Valuing Sustainability - Future states

TLDR; Computer Factory Example (FDMF)

Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

Daniel Smith et al. Activity Recognition within a Manufacturing System: A Comparison of Logic Programming, Machine Learning, and Combinatorial Optimization Based Methods. 2023

emble0	break0	assemble1 •••
king_at	deliver_to	o move_to
x0, y0)	(t1, x1, y	1) •••

Most likely behaviour seq. assemble -> break -> ...

Hidden Markov Model

PLP can do much more!

- Probabilistic
- Logic
- Programming
- Fusemate Implementation

Part 2

Part 1

- LLMs + Logic (Programming)
- Neural Networks + Logic (Programming)

Logic

"Algorithm = Logic + Control"

- Model the problem at hand with "logic"
- Feed into automated reasoning system
- Push button and get solution

Logic

Classical Non-monotonic Modal Probabilistic Temporal Graphs (Ontologies) **Relational (Tables) Built-in Theories**

Reasoning Tasks

Proving Disproving Query answering Model computation **Knowledge Completion** Diagnosis

flight(toronto, london). flight(london, rome). flight(chicago, london). flight(X, Y) := flight(X, Z), flight(Z, Y).

"Logic" vs "Logic Programming"?

AlphaGeometry, AlphaProof, LLM-modulo, ...

Classical Logic and Logic Programming Semantics

Classical (Open-World) Entailment

Non-Monotonic (Closed-World)

- Tweety is an animal
- X Tweety can fly
- X Tweety cannot fly

"Constraint" view

- Tweety is an animal
- Tweety can fly
- **X** Tweety cannot fly

"Provability" view Logic Programming

If X is a bird then X is an animal

If X is a bird and X is **not** an ostrich then X can fly

Tweety is a bird (Tweety is an ostrich)

> n animal fly not fly

Probabilistic Logic Programs							
Facts Rules	cat(tom). drinks(X, milk) :- cat(X).	Tom is a If X is a c					
Default Negation	innocent(X) :- cat(X), not guilty(X). flies(X) :- bird(X), not abnormal(X).	lf X is a c then X is					
@ Time (Fusemate)	thirsty(X) @ T+1 :- thirsty(X) @ T, not drink(X, _) @ T.	lf X is thi X does n then X is					
Probabilities	0.8 :: cat(tom). 0.5 :: drinks(X, milk) :- cat(X).						
Distributions (Fusemate)	nr_siblings(X) ~ [[0, 0.05], [1, 0.10], [5, 0.10]] :- cat(X).	Iop-l Botto Exac					
Queries	?– thirsty(tom) @ T thirsty(tom) @ 2, drink(tom, milk) @ 5.	Struc					

cat

cat then X drinks milk

cat and X is not guilty

s innocent

irsty at time T and

not drink at time T

s thirsty at time T+1

rational

-Down Inference

- tom-Up Inference
- ct inference/sampling
- ameter Learning
- cture Learning

Dynamic Data Structures and Distributions

Drawing without replacement

```
urn([r(1), r(2), g(1)]) @ 0.
draw ~ Balls @ T :-
    urn(Balls) @ T,
    Balls \= [].
urn(Balls -- [B]) @ T+1 :-
    urn(Balls) @ T,
    draw = B @ T.
some(red) @ T :- draw=r(_) @ T.
some(green) @ T :- draw=g(_) @ T.
```

Queries

```
?- some(green) @ 0.
% 0.333333
```

```
?- some(green) @ 1 | some(red) @ 0.
% 0.5 conditional query
```

?- some(C1) @ 1, some(C2) @ 2 | some(red)
% 0.5 :: [C1 = red, C2 = green]
% 0.5 :: [C1 = green, C2 = red]

Probabilistic Logic Programming (Fusemate)

Time %% Some "random" blockad block(1) @ 2. block(2) @ 3. prob(0). (0.5 :: prob(K+1) + prob(K)) @ N+1 :prob(K) @ N, %% ?- prob(K) @ 4. $\pm bl(K) @ N.$ prob(K) @ N+1 :-0.0625 :: prob(0) @ 4 prob(K) @ N, 0.3750 :: prob(1) @ 4 bl(K) @ N. 0.43750 :: prob(2) @ 4 0.0625 :: prob(3) @ 4 0.0625 :: prob(4) @ 4

Expressivity: full history (non-Markovian); random variables are first-class citizens

Probabilistic A*

Fusemate Probabilistic Logic Programming System

Implementation in Python

(From earlier versions in Scala)

Two-way interface Python <-> Fusemate

Python data structures available in Fusemate

Logic program can be written as Python functions

Efficient probablistic inference

Default negation via well-founded model Rules cannot change past states Two-phase inference algorithm

Phase 1 "grounding"

Removal of first-order variables

-> Bayes-net like program (may contain cycles)

Pase 2 inference/sampling

Top-down variable elimination with caching of results

Strong Python integration

def weather_0(): **return** {'rainy': 0.5, 'sunny': 0.5}

```
def weather Tp1(weather T):
   return {'rainy': {'rainy': 0.8, 'sunny': 0.2},
         [weather_T]
```

```
def obs_T(weather_T):
   return {'rainy': {'shop': 0.8, 'clean': 0.2},
          [weather_T]
```


Peter Baumgartner and Elena Tartaglia. *Bottom-Up Stratified Probabilistic Logic Programming with Fusemate*. ICLP 2023

'sunny': {'rainy': 0.2, 'sunny': 0.8}}\

'sunny': {'shop': 0.2, 'walk': 0.8}}\

Contribution: "Inconsistency Pruning" for better efficiency

Fusemate Inconsistency Pruning

obs ~ [R+3..R+30] @ T :-

```
state=rainy @ T, T > 0, obs=R @ T-1.
```

```
?- obs=0 @ 0, obs=4 @ 1, obs=20 @ 2.
```

Solution: "Inconsistency Pruning"

Naive (1): too many rules (quadratic in this case) 11

(2) Query probability (marginal probability by var. elim.)

0.000119

Distribution Semantics

Efficiency by Inconsistency Pruning

Distribution Semantics

$P(query) = \Sigma P(\checkmark)$

Efficiency by Inconsistency Pruning

?- obs=0 @ 0, obs=4 @ 1, obs=20 @ 2, state=sunny @ 0.

Distribution Semantics

Experimental Evaluation 1 - Hidden Markov Model

Grounding vs Inference - Mixed Weather

ules
53
276
499
682
839
.068
2 4 6 8

Fusemate: Improved grounding pays off Inference engine implements UNA ProbLog: Grounding OK?

Bottleneck inference component?

Experimental Evaluation 2 - Markov Model

Runtime Results Fusemate vs ProbLog

(ProbLog code from ProbLog tutorial web page)

Learning (Largely TBD in Fusemate)

Probability parameters learning

MLE, EM

Learning the structure of logic programs

Inductive Logic Programming (1970s) Probabilistic Version [Riguzzi 2015]

Logic programs from tabular data

Probabilistic version of CART Probabilistic decision lists [2017] FOLD-RM [Gupta et al, ICLP 2023] CON-FOLD [McGinness and B, ICLP 2024] = FOLD-RM with confidence values

Very short explanations

Conditions for

Survival?

	Passengerld	Survived	Pclass	Title	Sex	Age	SibSp	Parch	
0	1	False	3	Mr	male	22	1	0	
1	2	True	1	Mrs	female	38	1	0	
2	3	True	3	Miss	female	26	0	0	STON/C
3	4	True	1	Mrs	female	35	1	0	
4	5	False	3	Mr	male	NaN	0	0	

-0.97 survived(X) :- not perished(X).

0.9 perished(X) :- not sex(X, female). perished(X) :-

sex(X, female), pclass(X, 3),

-fare(X, N), not N <= 23.25.

ied(X). (, female).

- Probabilistic
- Logic
- Programming
- Fusemate Implementation

Part 2

Part 1

- LLMs + Logic (Programming)
- Neural Networks + Logic (Programming)

Statistics/NN/LLM+ Logic Combinations

StarAI = **RelationalAI/Logic +** Learning + Statistics (1980s)

Fusemate

LLMs + Logic

Augmented Language Models: a Survey

Grégoire Mialon* et al

See below

NeSy =

Neural Networks + Symbolic Reasoning

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation

Tarek R. Besold et al Department of Computer Science, City, University of London TAREK-R.BESOLD@CITY.AC.UK

Position: LLMs Can't Plan, **But Can Help Planning in LLM-Modulo Frameworks**

Subbarao Kambhampati¹ Karthik Valmeekam¹ Lin Guan¹ Mudit Verma¹ Kaya Stechly¹ Siddhant Bhambri¹ Lucas Saldyt¹ Anil Murthy¹

AlphaZero -> AlphaGeometry, AlphaProof

Lachlan's PhD - "AlphaPhysics"

NeSy + StarAl?

From Statistical Relational to Neural Symbolic Artificial Intelligence: a Survey.

Giuseppe Marra^a, Sebastijan Dumančić^c, Robin Manhaeve^a, Luc De Raedt^{a,b}

^aKU Leuven, Department of Computer Science and Leuven.AI ^bÖrebro University, Center for Applied Autonomous Sensor Systems ^cDelft University of Technology, Department of Software Technology

DeepProbLog - see below

gmialon@meta.com

LLM + Logic: LLMs *Are* Logic Reasoners?

Task LLM with Reasoning

ProntoQa [Saparov and He, 2023] Synthetic Data Varying redundancy (distractors) Varying length of reasoning chains

Each composite number is not liquid. Every composite number is a fraction. Every composite number is a number. Negative numbers are not large. Every fraction is large. Each fraction is a real number. Fractions are integers. Integers are temperate. Each number is slow. Each even number is loud. Even numbers are natural numbers. Alex is an even number. Alex is a composite number.

True or false: Alex is large.

Explainability?

LLM explanation can be nonsense Correctness and Scalability? More complex logic, e.g. quantifiers Planning task, see Subbarao Kambhampati Reasoning at all? Or lookup?

Prompt Engineering

In-prompt training one/view shot Chain-of-thought "explain your reasoning" Instruct LLM to use strategies (backward/forward/SOS - own work) Self-critique

LLM + Logic: Hierarchical Combination

Translation errors?

Reliable Natural Language Understanding with Large Language *Models and Answer Set Programming* [Rajasekharan et al, ICLP 2023]

Example 3.1:

Question: Alan noticed that his toy car rolls further on a wood floor than on a thick carpet. This suggests that: (world1: wood floor, world2: thick carpet)

- (A) The carpet has more resistance (Solution)
- (B) The floor has more resistance

LLMs as intelligent parsers Approach

(1) LLM w/ fine tuning translates problem into logic programming query

(2) Logic programming system answers query modulo background knowledge

Autocorrecting Translation Errors

Automated Theorem Provers Help Improve Large Language Model Reasoning [McGinness, B., LPAR 2024]

Each integer is not fruity. Negative numbers are brown. Wren is an integer.

LLM (wrong):

 $! [X] : (fruity(X) \Rightarrow integer(X)))$ integer(wren) ! [X] : integer(X) brown(negative)

Auto-corrected:

 $! [X] : (fruity(X) \Rightarrow \sim integer(X))$ integer(wren) % ! [X] : integer(X) is an NonFixableError ! [I] : (negative_number(I) => brown(I))

Neural Networks + Smbolic Reasoning

DeepProbLog

Neural probabilistic logic programming in DeepProbLog [Manhaeve et al, AIJ, 2021]

Inference

Query - does the following hold true? addition($\mathbf{3}, \mathbf{5}, 8$)

addition([**3**, **8**], [**2**, **5**], 63)

Use backward chaining with NN classifier for probabilistic facts

Returns query probability

Learning

End-to-end differentiable

-> back propagation modulo background knowledge

Here: learns digit image classifier from addition examples

"Strong" coupling

Backward Chaining

Neural Networks + Smbolic Reasoning

Many More Architectures

- Differentiable Theorem Proving [Rocktäschel]

```
parentOf(HOMER, BART).
grandfatherOf(X, Y) := fatherOf(X, Z), parentOf(Z, Y).
grandfatherOf(ABE, Q)? \{Q/LISA\}, \{Q/BART\}
```

Reasoning in embedding space:

Example: unify $v_{grandfather0f}(X, v_{BART})$ with $v_{grandpa0f}(v_{ABE}, v_{BART})$ $\Psi = \{ \mathbf{X} / \mathbf{v}_{\text{ABE}} \}, \quad \tau = \min(e^{-\|\mathbf{v}_{\text{grandfatherOf}} - \mathbf{v}_{\text{grandpaOf}}\|_2}, e^{-\|\mathbf{v}_{\text{BART}} - \mathbf{v}_{\text{BART}}\|_2})$

- Semantic Probabilistic Layers for Neuro-Symbolic Learning [Ahmed et al NeurIPS, 2022] -Logic constraints at the output layer, e.g. exclusivity constraints for classification
- FFNSL: Feed-Forward Neural-Symbolic Learner [Cunnington, Law, Lobo, Russo 2023]
- Encodings of logic within NNs _
- Logic Tensor Networks _
- Neural Datalog over time

Conclusions

Fusemate

- Probabilistic Logic Programming system
- Good

Expressivity, good Python interface, reasonably optimized for intended use case (HMM-ish)

- Needs work

Documentation, efficiency

LMM + Logic

- Current focus of research and D61 applications for "Explainability"

ML/LLM -> generate solution candidates

Probabilistic logic -> validate/complete solution candidates