'

I DATA
bl

N~

Probabilistic Logic Programming with Fusemate:
Main ldeas and Recent Developments

Peter Baumgartner

CSIRO/Data61 (StatML)
ANU CECC

About
D61 Applications
- PhDin 1996 in Germany, on Automated Reasoning

- NICTA 2005, CSIRO since 2014

ResearCh IntereSt “C)\ompterry ”
Knowledge representation and reasoning

Designing inference systems

Applications

Taxi rides in NYC Valuing Sustainability - Future states

. Supply Chain Model: Time Step 0
f Gap People

ssssss

hhhhhhhhhhhhhhh

Probabilitistic Logic Programming (PLP)
Combination with LLM (with Lachlan McGinness)

Food supply chain Beef supply chain Factory supply chain

States - Transitions - Uncertainty

2

TLDR; Computer Factory Example (FDMF)

Computer

Factory

w (N
Assemble } [Packing } Behavior |assemble0 breakO assemblel eee
WB 1 -l WB 5

G T e ’
A 4 \\\\\ (- \

Mother- Assemble } ______ \\\ Actions working_at delive r to move_to
board WB 2 “\-\\\ N L P)
eI ~:\\\ \‘\ N\

i (XX
Software Inst. W I Quality Check Trajectory (t0, x0, y0) (t1, x1, y1)

wB3 | | waa4 ~ o

—— Standard Workflow “----- + Rework Workflow

Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

—

Given trajectory

—

Probabilistic logic program

assemble -> break -> ...

.1.%% Distribution
%% Distribution
action = working_at(wb(W))
behaviour = assemble,
worker = W.

Hidden Markov Model

action = deliver_to(wb(W+1)!\
behaviour = assemble,

PLP can do much more!

“‘fx action = working_at(L) @ T.
: & action = working_at() @ T.

3

Most likely behaviour seq.

Daniel Smith et al. Activity Recognition within a Manufacturing System: A Comparison of Logic Programming, Machine Learning, and Combinatorial Optimization Based Methods. 2023

= Probabilistic
= Logic
Part 1

= Programming

= Fusemate Implementation

Logic

“Algorithm = Logic + Control”

- Model the problem at hand with “logic”

- Feed into automated reasoning system

- Push button and get solution

Logic

Classical
Non-monotonic
Modal

Probabilistic
Temporal

Graphs (Ontologies)
Relational (Tables)

Built-in Theories

Reasoning Tasks

Proving

Disproving

Query answering
Model computation
Knowledge Completion

Diagnosis

“Logic” vs “Logic Programming”?

flight(toronto, london).
flight(london, rome).
flight(chicago, london).
flight(X,Y) :— flight(X, Z) , flight(Z,Y).

Can Fly

\ms Feathers '

~Has Gills

Has Long . is Pink
Can Sing /rh‘ﬂ Legs /Clﬂ Bite / s h
- i Shark Salmon <5 Edible
Ostrichd—=Is Ta ="~ —_— \swims
LY L]
Is Yellow Can't Fly Dangerous Upstream
To Lay
Eqgs
.) .
A simple problem AlphaGeometry \ Solution
A A
i [% Language model } j]i
B C Adda Not B D C
construct| solved
Theorem premises: :~-; ~~~~~~~~~~~~~~~~~~~~ Construct D: midpoint BC
Let ABC be any triangle with AB=AC . . Solved | « AB=AC, BD=DC, AD=AD = ZABD= £DCA
Prove that angle (£) ABC= £BCA a Symbolic engine |———— | ZABD= #/DCA, B C D collinear =
L ‘ L ZABC=ZBCA

AlphaGeometry, AlphaProof, LLM-modulo, ...

Relational

Ontology

Neuro-Symbolic

Classical Logic and Logic Programming Semantics
TR - 2

Has Skin If X is a bird
Can Move Around . .
Eats then X is an animal

Breathes

If Xis a bird and

X is not an ostrich

then X can fly

Pink
/Is

|5 Edible
\Swims

Dangerous Upstream

togs Tweety is a bird

Can Sing
- Ostrich

Is Yellow

Canaryed.

(Tweety is an ostrich)

_ Y,

Classical (Open-World) Entailment Non-Monotonic (Closed-World)
v Tweety is an animal v Tweety is an animal
X Tweety can fly v Tweety can fly S ;»,;‘:
X Tweety cannot fly X Tweety cannot fly £e) s
‘/'Z v
“Constraint” view “Provability” view ‘\ -

Logic Programming é

Probabilistic Logic Programs

Facts

Rules

cat(tom).
drinks(X, milk) :— cat(X).

Tom is a cat
If X is a cat then X drinks milk

Default Negation

innocent(X) :— cat(X), not guilty(X).
flies(X) :—= bird(X), not abnormal(X).

If X is a cat and X is not guilty

then X is innocent

... @ Time thirsty(X) @ T+1 :- If X is thirsty at time T and
(Fusemate) thirsty(X) @ T, X does not drink at time T
not drink(X, _) @ T. then X is thirsty at time T+1
Probabilities 0.8 :: cat(tom).

0.5 :: drinks(X, milk) :— cat(X).

Distributions

(Fusemate)

nr_siblings(X) ~ [[0, 0.05], [1, 0.10@], ... [5, 0.10]]
:— cat(X).

Queries

?— thirsty(tom) @ T |
thirsty(tom) @ 2, drink(tom, milk) @ 5.

. :

Operational

Top-Down Inference
Bottom-Up Inference
Exact inference/sampling
Parameter Learning

Structure Learning j

Dynamic Data Structures and Distributions

Drawing without replacement

urn([r(1), r(2), g(1)]) @ 0.
draw ~ Balls @ T :-
urn(Balls) @ T,
Balls \= [].
urn(Balls -- [B]) @ T+1 :-
urn(Balls) @ T,
draw = B @ T.
some(red) @ T :- draw=r(_) @ T.
some(green) @ T :- draw=g(_) @ T.

Queries

7- some(green) @ O.
% 0.333333

7- some(green) @ 1 | some(red) @ O.
% 0.5 conditional query

?7- some(Cl) @ 1, some(C2) @ 2 | some(red)
% 0.5 :: [Cl = red, C2 = green]
% 0.5 :: [Cl = green, C2 = red]

D61 Supply Chain Risk Assessment Application

Supply Chain Model: Time Step 0O

Shapes 1
@® BetterFrames

. W Terl
The Chemical Guys

’ The WindowGap People ¢ Ter2
. ¥ Tier3

The Fitting People

Colors

‘ Node Quality
The Sealant Guys
. Edge Delivery

I best
The Better Sealant People
. Il worst

----- removed

BetterFrames

The Better Window People
H

Stablg Procgssor 1_2

Raw Chemicals PTY LTD

Stable Suppfier 2_1
The Frame Guys

Probabilistic Logic Programming (Fusemate)

SPRINKLER

Bayes Network wn T

F 0.4 0.6
T 0.01 0.99

?- rain | grasswet.

0.2 :: rain.

0.01 :: sprinkler :- rain.

0.4 :: sprinkler :- -rain.

0.99 :: grasswet - sprinkler, rain.
0. 1. grasswet - sprinkler, -rain.
0.8 :: grasswet - -sprinkler, rain.

GRASS WET
SPRINKLER RAIN‘ T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

network with conditional probability tables

NP-Complete Search Problems

color(X) in [r, g, b] :- node(X).

node(1). node(2). node(3). node(4).

noncol :- color(X)=r, color(Y)=r, edge(X,Y).
noncol :- color(X)=g, color(Y)=g, edge(X,Y).
noncol :- color(X)=b, color(Y)=b, edge(X,Y).
edge(1,2). edge(2,3). edge(3,1).

edge(4,1).
edge(4,2).
%edge(4,3).

%% \+ noncol is true iff there is a coloring

?- -noncol, color(1)=C1, color(2)=C2, color(3)=C3, color(4)=C4.

Logical variables X for domain objects

Expressivity: full history

(non-Markovian);

Time

block(1) @ 2.
block(2) @ 3.

prob(@).

> prob(K) @ N,
\+ bl(K) @ N.

prob(K) @ N+1 : -
prob(K) @ N,
bl(K) @ N.

%% Some "random" blockagh

(0.5 :: prob(K+1) + prob(K)) @ N+1 :-

%% ?- prob(K) @ 4.

0.0625 :: prob(0) @ 4
0.3750 :: prob(1) @ 4
0.43750 :: prob(2) @ 4
0.0625 :: prob(3) @ 4
0.0625 :: prob(4) @ 4

Hidden

Observation (Ey)

Algorithms
oo]

I K
|
K

X X
X X X X X X X X X
X X X X X X
X X X X X Rig 1 X
X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X
X X X X ng 2 X X
X X X X X X X X X
X X X X X, X X X X
X X X X X X X X X
X X X X X)ilig ¥ | x X
X X X X X X X X X
X X X X X X X X X

Probabilistic A*

Simulation

by Sampling

09:37:07:177

09._35»_53:958

tl&ggamsﬂ-m

random variables are first-class citizens o

Fusemate Probabilistic Logic Programming System

Implementation in Python Strong Python integration

(From earlier versions in Scala)
def weather_0():

Two-way interface Python <-> Fusemate return {'rainy': 0.5, 'sunny': 0.5}

Python data structures available in Fusemate
def weather_Tpl(weather_T):

return {'rainy': {'rainy': 0.8, 'sunny': 0.2%,
‘sunny': {'rainy': 0.2, 'sunny': 0.8%%\
[weather_T]

Logic program can be written as Python functions

Efficient probablistic inference

Default negation via well-founded model def obs_T(weather_T):

return {'rainy': {'shop': 0.8, 'clean': 0.2%,
‘sunny': {'shop': 0.2, 'walk': 0.8%}%\

Two-phase inference algorithm [weather_T]

Rules cannot change past states

- Phase 1 “grounding”

Removal of first-order variables

Contribution:

»

-> Bayes-net like program (may contain cycles) “Inconsistency Pruning’

for better efficiency

- Pase 2 inference/sampling
Top-down variable elimination with caching of results

10
Peter Baumgartner and Elena Tartaglia. Bottom-Up Stratified Probabilistic Logic Programming with Fusemate. ICLP 2023

Fusemate Inconsistency Pruning

Distribution Semantics
07 '
....... -
+[3. 30]¢ i
.;' 01@/N)16
+[0..5] ‘~,
AN . F
X 4
>
0.6 - P(query) = % P(v)
- 0 1 2

0.000119

dc

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.

N
3 o
N
1

Computing query success probabilities
state ~ [[rainy, 0.7], [sunny, 0.3]] @ T+1 :- puting query P

state=rainy @ T.
obs ~[R+3..R+30] @ T :-
state=rainy @ T, T > 0, obs=R @ T-1. Naive (1): too many rules (quadratic in this case)
?— 0bs=0 @ 0, obs=4 @ 1, obs=20 @ 2. Solution: “Inconsistency Pruning” 1

(1) Program grounding (= Bayes net)
(2) Query probability (marginal probability by var. elim.)

Efficiency by Inconsistency Pruning

| Distribution Semantics
L

0.6 /"\ 0.4

0y —
7 1.\0.16
)

016
- Query regression, Inconsistency pruning .0

051 4 _ Extend current domain with U heads 7; ; ",
0.4
—— P(query) = 2 P(v)

(Already grounded) programrules T=0 — Domain after T =0
state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0. state =rainy @ 0.
SBGecd DG pBeurnatatomraiy@gus 1P pruning state = sunny @ 0.
obs ~[0..5] @ 0 :- state=sunny @ 0. obs =0 @ 0.

j obs=1 @ 0.

rS’rrengfhen query by regression sv obs=5 @ 0.

7= 0bs=0 @ 0, obs=2 @ 1, obs=20 @ 2, state=sunny @ 0. 1

Efficiency by Inconsistency Pruning

——

Distribution Semantics

9 ‘s 0.6 /\0_4
* (A IS 4
[3..30] + [3..30] b In increasing stratification order: '“

- Ground out program over current domain .’
» {0 1@/N) 16

- Query regression, inconsistency pruning
. Extend current domai ith heads
n n n :3/ U

10
8
6
4
2

[0 5] + [05] |, B T S i N ‘ v “,"‘ ", ~~’
-""b -]1. A RS x “
0.4 > oo BT
' 0.6 ' L 5}\5 P(query) = 2 P(v)
Domain T =1 —> Grounded programrules T =1 l“
obs =0 @ 0. obs ~[3..30] @ 1 :- state= ralny @ 1, obs 0 @ @ 2o =~ [[R2LReale] @3-
obs=1@ 0 | o A NN S state=rainy @ T,
| T>0,
' obs=R @ T-1.
obs=5 @ 0.
state =rainy @ 1. Ip e

state = sunny @ 1. Inconsistency pruning: 62 -> 2 rules

7— Qbs;@w@“@, obs=4 @ 1, obs=20 @ 2, state=sunny @ 0.

13

Experimental Evaluation 1 - Hidden Markov Model

Runtime Results Fusemate vs ProbLog 400 - Sionty e 200 - -
300 - 150 -

Rainy/sunny example from above 200~ 100~

— 100~ 50 - Smallest domain
%% Queries for N=3 °

E O- 1 1 1 O- 1 ?7 —_ ? L
%% Sunny = 2 4 6 2 4 6

C
?-state=X@3 | obs=0@1, obs=0@ 2, obs=0@ 3. S Mixed weather Problem size

S
%% Rainy i 100-

7?7-state=X@3 | obs=4 @1, obs=8@2, obs=12@3 75-
50 -

—&— Fusemate w/o Guidance

—eo— Fusemate w/ Guidance

%% Mixed i
25 - Largest domain
state=X @3 | obs=0 @1, obs=4 @2, obs=24@ 3.] | ¢~ Problog
2 4 6
Grounding vs Inference - Mixed Weather
emate:
Fusemate #ground rules ProbLog Fus af
N query-guided unguided total time grounding time #ground rules Improv ed grounding pays Off
2 2200 6500 9.0 8.3 53 . .
3 2270 12900 30 19 276 Inference engine implements UNA
4 2300 21400 119 33 499
5 2400 32000 50 682 ProblLog:
6 2470 45000 65 839 :
7 2500 60000 95 1068 Grounding 0K?

Bottleneck inference component?

14

Experimental Evaluation 2 - Markov Model

Runtime Results Fusemate vs ProbLog

Time steps

%% Markov Model T
in~[a, b, c]l@o0. 1007

in~[[a, 0.9],[b, 0.05],

[c, 0.05]] @T+1 :—-in=a@T.
in~[[a,0.7],[c,0.3]]@T+1 :—1in=b@T.
in~[[a, 0.8],[c, 0.2]]@T+1 :—1in=c@T.

~
(6)
1

%% Time steps N = 20
?—1n=a@0, in=a@l, .., 1n=a@20.

Execution time (s)
3

%% Specificity, N=7 25~
?-1n=a@o0, in=a@l, in=12@2,..,in=18 @ 8.

%% Timepoint, N =20 07
?7- in=a@23. 0 20

(ProbLog code from ProblLog tutorial web page)

300 -

200 -

100 -

Problem size

Specificity

Timepoint
30-
20 -
10-
./. @ .\.
1 O i 1 1 1 1
8 0 5 10 15

~o— Fusemate —e— ProblLog

15

Learning (Largely TBD in

Probability parameters learning
MLE, EM

Learning the structure of logic programs
Inductive Logic Programming (1970s)
Probabilistic Version [Riguzzi 2015]

Logic programs from tabular data
Probabilistic version of CART
Probabilistic decision lists [2017]
FOLD-RM [Gupta et al, ICLP 2023]
CON-FOLD [McGinness and B, ICLP 2024]
= FOLD-RM with confidence values

Very short explanations

Conditions for

Survival?

Passengerld | Survived

Pclass Title Sex Age SibSp Parch

0 1 3 Mr male 22 1
1 2 1 Mrs female 38 1
2 3 3 Miss female 26 0
3 4 1 Mrs female 35 1
4 5 3 Mr male NaN 0

-0-97 survived(X) :— not perished(X).
0.9 perished(X) :- not sex(X, female).
perished(X) :-
sex(X, female), pclass(X, 3),

—farebc N RetN—<=2325—

16

0

o O o o

STON/C

Part 2

= LLMs + Logic (Programming)

= Neural Networks + Logic (Programming)

17

Statistics/NN/LLM+ Logic Combinations

&é: MORGAN &CLAYPOOL PUBLISHERS

Sta rAl = Statistical Relational
Artificial Intelligence
. - Logic, Probability,
RelationalAl/Logic + and Computation

Luc De Raedt

Learning + Statistics (1980s) e

David Poole

SYNTHESIS LECTURES ON ARTIFICIAL
u s e m a e INTELLIGENCE AND MACHINE LEARNING

Ronald]. Brachman, William W. Cohen, and Peter Stone, Series Editors

NeSy =

Neural Networks + Symbolic Reasoning

Neural-Symbolic Learning and Reasoning:
A Survey and Interpretation

Tarek R. Besold et al TAREK-R.BESOLD@QCITY.AC.UK
Department of Computer Science, City, University of London

NeSy + StarAl ?

From Statistical Relational to Neural Symbolic
Artificial Intelligence: a Survey:.

Giuseppe Marra?, Sebastijan Dumand¢i¢®, Robin Manhaeve?, Luc De Raedt®?

KU Leuven, Department of Computer Science and Leuven.Al
bOrebro University, Center for Applied Autonomous Sensor Systems
¢Delft University of Technology, Department of Software Technology

DeepProblLog - see below

LLMs + Logic

Augmented Language Models: a Survey

Grégoire Mialon* et al gmialon@meta.com

See below

Position: LLMs Can’t Plan,
But Can Help Planning in LLM-Modulo Frameworks

Subbarao Kambhampati' Karthik Valmeekam ' Lin Guan' Mudit Verma! Kaya Stechly !
Siddhant Bhambri! Lucas Saldyt' Anil Murthy '

AlphaZero -> AlphaGeometry, AlphaProof

A simple problem AlphaGeometry ‘ Solution
A A
i % Language model i i
8 C Add a Not 8 D c
construct -, | solved
Theorem premises:) --=> « Construct D: midpoint BC

Let ABC be any triangle with AB=AC . . Solved | « AB=AC, BD=DC, AD=AD = £ABD= ZDCA
Prove that angle (£) ABC= £BCA Q Symbolic engine « £LABD= £DCA, B C D collinear =
L ‘ t ZABC=£ZBCA

Lachlan’s PhD - “AlphaPhysics”

18

LLM + Logic: LLMs Are Logic Reasoners?

Task LLM with Reasoning

ProntoQa [Saparov and He, 2023]
Synthetic Data
Varying redundancy (distractors)

Varying length of reasoning chains

Prompt Engineering

In-prompt training one/view shot

Each composite number is not liquid. Every composite number is a fraction. Every com-
posite number s a number. Negative numbers are not large. Every fraction is large. Each
fraction 1s a real number. Fractions are integers. Integers are temperate. FEach number
18 slow. Fach even number is loud. Even numbers are natural numbers. Alex is an even
number. Alex i1s a composite number.

True or false: Alex is large.
Explainability?

LLM explanation can be nonsense
Correctness and Scalability?

Chain-of-thought “explain your reasoning” More complex logic, e.g. quantifiers

Instruct LLM to use strategies
(backward/forward/SOS - own work)

Self-critique

Planning task, see Subbarao Kambhampati
Reasoning at all?
Or lookup?

19

LLM + Logic: Hierarchical Combination

Translation errors?

Reliable Natural Language Understanding with Large Language
Models and Answer Set Programming [Rajasekharan et al, ICLP 2023]

Example 3.1:
Question: Alan noticed that his toy car rolls{ further Jon a wood

floor than on a thick carpet. This suggests that:

(worldl: wood floor, world2: thick carpet)
(A) The carpet has (Solution)

(B) The floor has more resistance

Approach LLMs as intelligent parsers

(1) LLM w/ fine tuning translates problem into logic programming query

(2) Logic programming system answers query modulo background knowledge

gplus (friction, heat).
gplus (speed, distance).

gminus (friction, speed).

gminus (distance, loudness) .
positive (X, Y) :— gplus(X, Y). negative (X, Y) :— gminus (X, Y).
positive (X, Y) :— gplus(Y, X). negative (X, Y) :— gminus (Y, X).

opposite_w (worldl,world2). opposite_v (higher, lower) .
opposite_w (world2,worldl). opposite_v (lower, higher) .
conc (P, V, W) :— obs(P, Vr, Wr), property(P),

opposite_w (W, Wr), opposite_v (V,Vr).

property (friction) . property (heat) . property (speed) .

Autocorrecting Translation Errors

Automated Theorem Provers Help Improve
Large Language Model Reasoning

[McGinness, B., LPAR 2024]

Each integer is not fruity.
Negative numbers are brown.
Wren 1s an integer.

LLM (wrong):

' [X] : (fruity(X) => integer(X)))
integer(wren)

I [X] : integer(X)

brown(negative)

Auto-corrected:

I [X] : (fruity(X) => ~ integer(X))
integer (wren)

% ! [X] : integer(X) is an NonFixableError
I [I] : (negative_number(I) => brown(I))

20

Neural Networks + Smbolic Reasoning

DeepProblLog Backward Chaining

f?_] '
Neural probabilistic logic programming in DeepProbLog] addition (’ ’ 8)

[Manhaeve et al, AlJ, 2021] /

addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.
Inference
. Hard
Query - does the following hold true? ,
constraint
addition(, , 8)
a‘dd_ition([,],_[,], 63) 0.8 :: digit (f8,0); 0.1 :: digit (). 1) .

0.2 :: digit(“,O); 0.6 :: digit(“,l).

Use backward chaining with
NN classifier for probabilistic facts

Returns query probability
Learning

End-to-end differentiable Strong” coupling

?
-> back propagation modulo background knowledge Counterpart LLM modulo?

Here: learns digit image classifier from addition examples

21

Neural Networks + Smbolic Reasoning

Many More Architectures

- Differentiable Theorem Proving [Rocktaschell]

parent0f(HOMER, BART).
grandfather0f(X,Y) :— father0£f(X,Z), parent0£f(Z, Y).
grandfather0f(ABE, Q)? {Q/LisA}, {Q/BART}

Reasoning in embedding space:

Example: unify VegrandfatherOf (X, vgarr) with VgrandpaOf(VABE> Viarr)

y = {X/VABE}7 T = min(e_||VgrandfatherOf_VgrandpaOf||27 e_||VBART_VBART||2)

- Semantic Probabilistic Layers for Neuro-Symbolic Learning [Ahmed et al NeurlPS, 2022]
Logic constraints at the output layer, e.g. exclusivity constraints for classification

- FFNSL: Feed-Forward Neural-Symbolic Learner [Cunnington, Law, Lobo, Russo 2023]

- Encodings of logic within NNs

- Logic Tensor Networks

- Neural Datalog over time

22

Conclusions

Fusemate
- Probabilistic Logic Programming system
- Good
Expressivity, good Python interface, reasonably optimized for intended use case (HMM-ish)
- Needs work

Documentation, efficiency

LMM + Logic
- Current focus of research and D61 applications for “Explainability”
ML/LLM -> generate solution candidates

Probabilistic logic -> validate/complete solution candidates

23

