
Proof Theory of Temporal Logics

Bahareh Afshari

University of Gothenburg, Sweden

ANU Logic Summer School, December 2023

B. Afshari (GU) PToTL December 2023 1 / 94

References

Logic in Computer Science: Modelling and reasoning about systems.
M. Huth and M. Ryan. CUP 2004.

Temporal Logics in Computer Science: Finite-state systems.
S. Demri, V. Goranko, and M. Lange. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2016.

B. Afshari (GU) PToTL December 2023 2 / 94

Outline

1 Motivating example

2 Modal Logic

3 Linear Time Temporal Logic

4 Propositional Dynamic Logic

5 Cyclic and Ill-founded Proofs

6 Modal µ-calculus

7 Proof Systems

B. Afshari (GU) PToTL December 2023 3 / 94

Motivating example

Section 1

Motivating example

B. Afshari (GU) PToTL December 2023 4 / 94

Motivating example

Railway signalling

Questions Is the system operating correctly? Are there any faults?

B. Afshari (GU) PToTL December 2023 5 / 94

Motivating example

Reactive systems

Main characteristics:
interact with the environment
safety-critical
run indefinitely

Other examples: air traffic control systems or automated stock trading

Want to verify
– Liveness Good things eventually happen
– Safety Bad things never happen

B. Afshari (GU) PToTL December 2023 6 / 94

Motivating example

An example in railway signalling

Let pi denote “Train #i is granted permission to enter the signal
block.”
Requirements:

1. Eventually p1 (liveness)
2. Eventually p2 (liveness)
3. Never(p1 and p2) (safety)

Liveness “Something good will eventually happen.”
Safety “Something bad will never happen.”

Question How can we express these properties in a logical language?
1 ≡ p1 or Next(1)
3 ≡ not(p1 and p2) and Next(3)
x ≡ φ(x) where φ is a statement using finite vocabulary such as
Next and logical connectives.

B. Afshari (GU) PToTL December 2023 7 / 94

Motivating example

Questions of intrest

1 Are there logics suitable to express such temporal properties?
2 What is the cost of checking liveness, safety and other fairness

constraints?
3 Can practical algorithms be developed for real-world examples?

B. Afshari (GU) PToTL December 2023 8 / 94

Modal Logic

Section 2

Modal Logic

B. Afshari (GU) PToTL December 2023 9 / 94

Modal Logic

Basic modal logic

Propositional logic:
propositional variables p, q, . . .
connectives ¬, ∧, ∨, →
Syntax p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ

Semantics: formulas are either true or false

One can extend propositional logic by
adding two unary predicates:

2 : box; necessarily
3 : diamond; possibly

If φ is a formula so are 2φ and 3φ.
Examples: 2(p ∨3q), 23¬p

B. Afshari (GU) PToTL December 2023 10 / 94

Modal Logic

Models of modal logic

A model of modal logic, called a transition system (or Kripke
structure), is a triple T = (S,→, λ) with a

set of states S;
transition relation → ⊆ S × S, writing also s→ t for (s, t) ∈→
function λ : Prop → P(S) interpreting atomic propositions

Note that a transition system is simply a directed graph whose nodes
are labelled by finite sets of propositions.

B. Afshari (GU) PToTL December 2023 11 / 94

Modal Logic

Example

s0

s1

s2

p

p, q

p

Transition system with states {s0, s1, s2}

B. Afshari (GU) PToTL December 2023 12 / 94

Modal Logic

Semantics of modal logic

We define what it means for a transition system T to model/satisfy a
formula φ at a world s, written T, s |= φ, by structural induction:

T, s |= p iff p ∈ λ(s)

T, s |= ¬φ iff T, s ̸|= φ

T, s |= φ ∧ ψ iff T, s |= φ and T, s |= ψ

T, s |= φ ∨ ψ iff T, s |= φ or T, s |= ψ

T, s |= 2φ iff for every s→ t we have T, t |= φ

T, s |= 3φ iff for some s→ t we have T, t |= φ

We write ∥φ∥T to denote the set of all states s of transition system T
that satisfy the formula φ. In other words,

s ∈ ∥φ∥T if and only if T, s |= φ.

B. Afshari (GU) PToTL December 2023 13 / 94

Modal Logic

Examples

s0

s1

s2

p

p, q

p

Transition system T with states
{s0, s1, s2}

∥p∥T = {s0, s1, s2}
s0 |=T 2p

∥q∥T = {s2}
∥3q∥T = {s0, s1}
∥33q∥T = {s0, s1, s2}
∥23¬q∥T =?

B. Afshari (GU) PToTL December 2023 14 / 94

Modal Logic

Satisfiability via tableaux

We will look at a syntactic way of constructing models for modal logics.

Semantic methods:
selection
canonical model construction
filteration

Syntactic methods:
tableaux
automata
games

Remark Tableaux are often designed for satisfiability but one can also
talk about tableaux for validity. As the two notions are dual if you have
a tableau system for one you can define an analogous one for the other.

B. Afshari (GU) PToTL December 2023 15 / 94

Modal Logic

Yet another model construction technique

Questions
1 Can we get finite models? Often, but not always.
2 Is it a robust technique like canonical model construction? No!
3 Can one use tableaux for decidability? Yes, sometimes.
4 When should we use tableaux? Seeking computational properties.

B. Afshari (GU) PToTL December 2023 16 / 94

Modal Logic

How does a tableau look like?

Our tableaux are going to look like (upwards growing) trees:

Given a formula φ we want to check if it satisfiable. The idea is to
systematically build a model from using the logical structure of φ:

Start the tree by putting φ at the root;
From the root make new branches (unary, binary or more);
The idea of these new nodes is to reduce checking satisfiability of φ
to checking satisfiability of its constituents;
To check satisfiability of φ1 ∧ φ2 we check both φ1 and φ2;
Continue breaking down φ until only literals remain.

B. Afshari (GU) PToTL December 2023 17 / 94

Modal Logic

Preliminaries: Negation Normal Form

To make our tableaux construction as simple as possible we are going to
work with modal formulas in negation normal form.

Definition
A formula of modal logic is said to be in Negation Normal Form (NNF)
iff it can be constructed by 2, 3, ∧, ∨ from propositions and negated
propositions (literals).

Examples:
¬3(¬p ∧ q) is not in NNF but 2(p ∨ ¬q) is.
What about 2¬(p ∧ q)?

NNF is not a restriction on expressibility:

Lemma (Exercise)
Every formula of modal logic is equivalent to one in NNF. The
equivalence is provable in K.

B. Afshari (GU) PToTL December 2023 18 / 94

Modal Logic

Motivating example

Consider the formula φ = (22p ∧3q) ∨ (¬p ∧2¬q). We aim to find a model
of φ, namely some M = (W,→, V) and w0 ∈W such that M,w0 |= φ.

w0 |= (22p ∧3q) ∨ (¬p ∧ 2¬q)
w0 |= (22p ∧3q)

w0 |= {22p,3q}
∃w1 : w0 → w1 w1 |= {2p, q}

This “model search” naturally gives rise to the structure M given by:
W = {w0, w1}
w0 → w1

V (p) = ∅, V (q) = {w1}

This search for satisfiability (or soundness) can be formalised using tableaux, a tree
where each node is labelled by a subset of Sub(φ) (the set of all subformulas of φ).

B. Afshari (GU) PToTL December 2023 19 / 94

Modal Logic

Trees

A tree (over Σ) is a triple t = ⟨S,→, λ ⟩ with a distinguished node
ρ ∈ S which satisfies the following conditions.

(S,→) is a connected directed graph.
There are no transitions into ρ.
For every s ∈ S \ {ρ} there is exactly one s0 ∈ S such that s0 → s.
λ : S → P(Σ) is called the labelling function of t.

The node ρ is referred to as the root of the tree and any node without
outgoing edges is a leaf.

Remark. A tree is a special case of a Kripke structure.

A path through tree t is a function P : N → S such that
P(0) = ρ,
For every n, if P(n) is not a leaf, then P(n) → P(n+ 1).

B. Afshari (GU) PToTL December 2023 20 / 94

Modal Logic

Notation

From now on, all formulas considered are in NNF.
We use φ,ψ, δ, γ, . . . (also with indices) for denoting formulas.
Finite sets of formulas are denoted by Γ,∆,Θ,Λ, . . .

Prop a (possibly infinite) set of propositions.
A literal is an element of Lit= Prop ∪ {¬p | p ∈ Prop}.
A set X ⊆ Lit is inconsistent if {p,¬p} ⊆ X for some p ∈ Prop.

2Γ = {2φ | φ ∈ Γ } and 3Γ = {3φ | φ ∈ Γ }.
Γ, φ means Γ ∪ {φ}, and Γ,∆ denotes Γ ∪∆.

B. Afshari (GU) PToTL December 2023 21 / 94

Modal Logic

Pre-tableaux

A pre-tableau for φ is a tree t = ⟨S,→, λ ⟩ over Sub(φ) such that
1 λ(ρ) = {φ},
2 every leaf l ∈ S is labelled by a sequent of the form 2∆,3Λ,Θ

where Θ ⊆ Lit and either
Λ = ∅, or
Θ is inconsistent.

3 every non-leaf of t is related to its immediate successors by one of
the rules below.

∆, φ0, φ1∧
∆, φ0 ∧ φ1

∆, φ0∨0
∆, φ0 ∨ φ1

∆, φ1∨1
∆, φ0 ∨ φ1

∆, δ1 ∆, δ2 · · · ∆, δn
mod Θ ⊆ Lit is consistent

2∆,3{δ1, · · · , δn},Θ

Rules for K pre-tableaux

B. Afshari (GU) PToTL December 2023 22 / 94

Modal Logic

Remarks

A pre-tableau is a finitely branching tree.
Branching occurs only mod-rules.

The rules are read bottom-up (from root towards leaves).
For each rule the distinguished formulas in the lower and upper
sequents are called respectively the principal and residual
formulas of the rule.
In the mod-rule all formulas are considered distinguished, including
those in Θ.

The mod-rule can be applied only if no other rule is applicable.
For modal logic K tableaux are well-founded trees. In other words,
every path is finite. Why?

B. Afshari (GU) PToTL December 2023 23 / 94

Modal Logic

Examples of pre-tableaux

The formula (22p ∧3q) ∨ (¬p ∧2¬q) has two pre-tableaux:

□p, q
mod 22p,3q
∧

22p ∧3q
∨0

(22p ∧3q) ∨ (¬p ∧2¬q)

¬p,2¬q
∧ ¬p ∧2¬q

∨1

(22p ∧3q) ∨ (¬p ∧2¬q)

Question How many pre-tableaux does (¬p ∨33q) ∧ (p ∨22¬q) have?

B. Afshari (GU) PToTL December 2023 24 / 94

Modal Logic

Examples of pre-tableaux

¬p, p
∨0 ¬p, p ∨22¬q

∨0 ¬p ∨33q, p ∨22¬q
∧

(¬p ∨33q) ∧ (p ∨22¬q)

q,¬q
mod 3q,2¬q

mod 33q,22¬q
∨1

33q, p ∨22¬q
∨1 ¬p ∨33q, p ∨22¬q

∧
(¬p ∨33q) ∧ (p ∨22¬q)

¬p,22¬q
∨1 ¬p, p ∨22¬q

∨0 ¬p ∨33q, p ∨22¬q
∧

(¬p ∨33q) ∧ (p ∨22¬q)

q
mod 3q

mod 33q, p
∨0

33q, p ∨22¬q
∨1 ¬p ∨33q, p ∨22¬q

∧
(¬p ∨33q) ∧ (p ∨22¬q)

B. Afshari (GU) PToTL December 2023 25 / 94

Modal Logic

Tableaux definition

A tableau is a pre-tableau where the sequent (finite set of formulas) at
each leaf has the form 2Γ,Θ where Θ ⊆ Lit is consistent.

Question Which of these are tableaux?

¬p, p
∨0 ¬p, p ∨22¬q

∨0 ¬p ∨33q, p ∨22¬q
∧

(¬p ∨33q) ∧ (p ∨22¬q)

q,¬q
mod 3q,2¬q

mod 33q,22¬q
∨1

33q, p ∨22¬q
∨1 ¬p ∨33q, p ∨22¬q

∧
(¬p ∨33q) ∧ (p ∨22¬q)

¬p,22¬q
∨1 ¬p, p ∨22¬q

∨0 ¬p ∨33q, p ∨22¬q
∧

(¬p ∨33q) ∧ (p ∨22¬q)

q
mod 3q

mod 33q, p
∨0

33q, p ∨22¬q
∨1 ¬p ∨33q, p ∨22¬q

∧
(¬p ∨33q) ∧ (p ∨22¬q)

B. Afshari (GU) PToTL December 2023 26 / 94

Modal Logic

Properties

Observation
Every formula of modal logic has at least one (and finitely many)
pre-tableaux.

Question How many pre-tableaux does a formula have?

Lemma (Exercise)

Let t = ⟨S,→, λ ⟩ be a tableau and suppose s ∈ S. Then for all
p ∈ Prop we have {p,¬p} ⊈ λ(s).

B. Afshari (GU) PToTL December 2023 27 / 94

Modal Logic

Soundness

Lemma
If φ has a tableau then φ is satisfiable.

Let t = ⟨S,→, λ ⟩ be a tableau for φ.

Define a structure M = (W,R, V) and a map τ : S →W such that
1 τ(ρ) = w0 ∈W .
2 If s0 → s1 and the tableau rule applied at s is mod-rule then
(τ(s0), τ(s1)) ∈ R, otherwise τ(s0) = τ(s1).

3 w ∈ V (p) iff there exists s ∈ S such that τ(s) = w and p ∈ λ(s).
Exercise Complete the proof by first proving

Show that for every s ∈ S and ψ ∈ λ(s) we have

ψ ∈ λ(s) iff M, τ(s) |= ψ

Hint: By double induction on i) complexity of ψ and ii) distance of
s from the leaves.
B. Afshari (GU) PToTL December 2023 28 / 94

Modal Logic

How to extract the tree-model?

Both of the following are tableaux.

□p, q
mod 22p,3q
∧

22p ∧3q
∨0

(22p ∧3q) ∨ (¬p ∧2¬q)

¬p,2¬q
∧ ¬p ∧2¬q

∨0

(22p ∧3q) ∨ (¬p ∧2¬q)

The models they give us are respectively:
W = {w0, w1, }
R = {(w0, w1))}
V (p) = ∅, V (q) = {w1}

W = {w0}
R = ∅
V (p) = ∅

B. Afshari (GU) PToTL December 2023 29 / 94

Modal Logic

Completeness

Lemma
If φ is satisfiable then φ has a tableau.

Proof. Let T = (S,→, λ) be a transition system with distinguished
node s0 such that T, s0 |= φ.

Use the model T as a guiding tool to construct a tableau for φ.
More specifically, build a pre-tableau such that every sequent is
satisfied by some s ∈ S.
Every path in the pre-tableau will correspond to a path in T .
Every leaf in the pre-tableau will be of the form 2Γ,Θ where Θ is
consistent.

Exercise. Fill in the details of the proof.

Corollary
Modal logic has the finite model property.

B. Afshari (GU) PToTL December 2023 30 / 94

Modal Logic

Exercises

Consider the formulas φ and ψ given by

φ :=2p→ 22p

ψ :=3(p→ q) → (2p→ 3q)

1 Give an equivalent NNF formula for each
2 Using tableaux check if they are valid/satisfiable

Notes
If you are claiming it is satisfiable then you should provide
a tableau and describe the model it gives rise to.
If you are claiming it is not satisfiable then you must argue that it
has no tableaux; you can do this by listing all pre-tableaux and
showing none satisfy the tableaux condition.
Validity of φ can be deduced from satisfiability of ¬φ.

B. Afshari (GU) PToTL December 2023 31 / 94

Modal Logic

Expressive limitation of modal logic

Suppose we are interested to express the following property

there is a finite path that reaches a node labelled by p

We can try (and fail) using the modal syntax: p ∨3p ∨33p ∨ · · ·

Modal language does not allow us to express properties along arbitrary
(finite or infinite) paths in a structure. Can we do better? Yes!

B. Afshari (GU) PToTL December 2023 32 / 94

Modal Logic

Temporal Logics

Temporal logics provide us with a language that can express path
quantification:

“along every path . . . ”
“there exists a path along which . . . ”

and much more complex properties.

B. Afshari (GU) PToTL December 2023 33 / 94

Linear Time Temporal Logic

Section 3

Linear Time Temporal Logic

B. Afshari (GU) PToTL December 2023 34 / 94

Linear Time Temporal Logic

Linear-time Temporal Logic

LTL-formulas, over atomic propositions p1, · · · , pn, are defined

φ ::= pi atomic proposition
| ¬φ negation
| φ ∧ ψ conjunction
| φ ∨ ψ disjunction
| Xφ next
| φU ψ until

Intended meaning
Xφ “φ is true at the next time-step”
φU ψ “φ is true until ψ is true (and ψ holds eventually)”

B. Afshari (GU) PToTL December 2023 35 / 94

Linear Time Temporal Logic

Two additional constructs

Fφ “φ is eventually true”
φ is true at some point in the future

Gφ “φ is always true”
φ is true at every point in the future (including the present)

They are expressible in LTL by

Fφ := trueU φ
Gφ := ¬(F¬φ)

B. Afshari (GU) PToTL December 2023 36 / 94

Linear Time Temporal Logic

Examples of properties expressible in LTL

Recurrence: “p1 holds infinitely often”

G (F p1)

Periodicity: “p1 is true initially and precisely at every third
moment”

p1 ∧ X¬p1 ∧ XX¬p1 ∧ G (p1 ↔ XXX p1)

Request-response: “It is always the case that whenever p1 holds,
p2 will hold sometime later”

G (p1 → XF p2)

Fairness: “If p1 is true infinitely often, then so is p2”

GF p1 → GF p2

B. Afshari (GU) PToTL December 2023 37 / 94

Linear Time Temporal Logic

Kripke structures revisited

A (pointed) Kripke structure over a set of atomic propositions
{ p1, . . . , pn } is a quadruple (S,R, λ, s0) with

a finite state-set S
an initial/distinguished state s0 ∈ S

a transition relation R ⊆ S × S, and
a labelling function λ : S −→ P({ p1, · · · , pn }), associating to each
s ∈ S the set λ(s) of those pi that are satisfied at s.

Notation

We write λ(s) as a bit vector

b1
...
bn

 ∈ Bn such that bi = 1 iff pi ∈ λ(s).

B. Afshari (GU) PToTL December 2023 38 / 94

Linear Time Temporal Logic

Paths and label sequences

An infinite path s0s1s2 · · · through a Kripke structure (S,R, λ, s0)
induces an infinite sequencee of “labels” over the alphabet Bn

λ(s0)λ(s1)λ(s2) · · ·

Example

A Kripke structure over { p1, p2 }.
(
1
0

) **

(
0
0

) tt
//
(
1
1

) 11

--
(
0
1

)
JJ

(
1
1

)(
1
0

)(
0
1

)(
1
0

)(
0
0

)(
0
0

)
· · ·(

1
1

)(
0
1

)(
1
0

)(
0
1

)(
1
0

)(
0
0

)(
0
0

)
· · ·

B. Afshari (GU) PToTL December 2023 39 / 94

Linear Time Temporal Logic

Semantics of LTL

LTL-formulas over atomic propositions p1, · · · , pn are interpreted as sets
of ω-words α over the alphabet Bn.

Notation. Let α = α(0) α(1) · · · ∈ (Bn)ω:
1 αi stands for α(i)α(i+ 1) · · · , the i-suffix of α; so α = α0.
2 (α(i))j is the j-th component of the vector α(i).

Satisfaction relation. Let i ≥ 0. Define αi ⊨ φ by recursion over φ:

αi ⊨ pj iff (α(i))j = 1

αi ⊨ ¬φ iff (αi ̸⊨ φ)
αi ⊨ φ ∨ ψ iff αi ⊨ φ or αi ⊨ ψ
αi ⊨ φ ∧ ψ iff αi ⊨ φ and αi ⊨ ψ
αi ⊨ Xφ iff αi+1 ⊨ φ

αi ⊨ φU ψ iff ∃j ≥ i :
(
αj ⊨ ψ ∧ ∀i ≤ k < j : αk ⊨ φ

)
We say α satisfies φ, denoted α ⊨ φ, if α0 ⊨ φ.

B. Afshari (GU) PToTL December 2023 40 / 94

Linear Time Temporal Logic

On meta-theory of LTL

1. Linear vs Branching
Linear-time properties set the same conditions on every infinite
path through a system modelled by a Kripke structure.
Branching-time properties are conditions on the structure of the
tree formed by all paths through a Kripke structure

See e.g. Branching vs. linear time: Final showdown, M.Y. Vardi, TACAS
2001:1–22.

2. LTL vs FOL
Kamp showed in his influential doctoral thesis (1868) that
LTL-definable languages are first-order definable:

See e.g. A proof of Kamp’s theorem. A. Rabinovich: CSL’12:516–527.

B. Afshari (GU) PToTL December 2023 41 / 94

Linear Time Temporal Logic

Axiomatisation of LTL

We work in two-sided sequent calculus so we can handle negation.
Rules for the propositional part is as usual with left and right
intro/outro rules for each connective.
The main task is to deal with φU ψ.
We treat this new connective by exploiting the following equivalence

φU ψ ≡ ψ ∨ (φ ∧X (φU ψ))

Γ ⇒ ∆
X with Σ,Λ arbitrary sequents

Σ,XΓ ⇒ X∆,Λ

Γ ⇒ ∆, φ, ψ Γ ⇒ ψ,X (φU ψ)
UR

Γ ⇒ ∆, φU ψ

Γ, ψ ⇒ ∆, Γ, φ,X (φU ψ) ⇒ ∆
UL

Γ, φU ψ ⇒ ∆

B. Afshari (GU) PToTL December 2023 42 / 94

Linear Time Temporal Logic

Non-wellfounded proofs

Pre-proofs are finite branching but can have infinitely long branches

We need to know the following notions for a pre-proof
path
trace

Proofhood condition every infinite path carries an infinite trace on
the left/right of ⇒

Remark Notice:
every infinite trace stabilises on the left or right of ⇒
every infinite path take the right premise of UL/UR infinitely often

B. Afshari (GU) PToTL December 2023 43 / 94

Linear Time Temporal Logic

LTL finitary axiomatisation

We need to add an induction axiom to handle the until operator:

ψ ∨ (φ ∧X δ) → δ
ind

φU ψ → δ

Or equivalently,

ψ → δ φ ∧X δ → δ
ind

φU ψ → δ

B. Afshari (GU) PToTL December 2023 44 / 94

Propositional Dynamic Logic

Section 4

Propositional Dynamic Logic

B. Afshari (GU) PToTL December 2023 45 / 94

Propositional Dynamic Logic

PDL

Idea: extend modal logic with a modality for every program

Let π, π′, . . . denote programs. We allow ourself an infinite collection of
diamonds of the form ⟨π⟩φ. The intended interpretation is

⟨π⟩φ meaning some terminating execution of the program π from
the current state leads to a state satisfying φ.
[π]φ meaning every terminating execution of π from the current
state leads to a state satisfying φ.

So far there is nothing interesting about viewing labels as programs. But
by imposing a structure on our programs we can capture the essence of
program execution/verification.

B. Afshari (GU) PToTL December 2023 46 / 94

Propositional Dynamic Logic

What structure?

Suppose we have our list a, b, c, . . . of basic programs, those that
cannot be broken down to smaller ones.

The following four operations allow us to build complex programs
from basic ones:

Sequence: If π1 and π2 are programs then π1;π2 is a program.
The program π1;π2 executes π1 followed by π2.
Choice: If π1 and π2 are programs then π1 ∪ π2 is a program. The
program π1 ∪ π2 will (non-deterministically) choose one of π1 or π2
and execute it.
Iteration: If π is a program then π∗ is program. The program π∗

executes π a finite number of times.
Test: If φ is a formula then φ? is a program. Program φ? tests if
formula φ is true; if the answer is yes it continues otherwise it fails.

B. Afshari (GU) PToTL December 2023 47 / 94

Propositional Dynamic Logic

Examples

p→ [π]q

if p then after we have executed program π we are guaranteed to have q.
p→ [π1 ∪ π2]q

if p then after executing either program π1 or program π2 we have q.

(p?;π1) ∪ (¬p?;π2)

if p then execute π1 else execute π2

(p?;π)∗;¬p?

while p do π

Note, the first two are formulas and second two programs. Programs are
used to define formulas. But formulas can also be used to build new
programs which in turn can be applied to create more complex formulas.

B. Afshari (GU) PToTL December 2023 48 / 94

Propositional Dynamic Logic

Syntax of PDL

Formally, the programs and formulas, with respect to a set B of basic
programs and a set Prop of propositions, are defined by mutual
induction:

π := a | π;π | π∗ | π ∪ π | φ?
φ := p | ¬φ | φ ∨ φ | [π]φ

where a ∈ B and p ∈ Prop.

B. Afshari (GU) PToTL December 2023 49 / 94

Propositional Dynamic Logic

Some remarks

PDL is a widely used in both theoretical and applied Computer Science
(e.g. Description Logics, Game Logics and Linguistics).

As you already see, there are two kinds of syntax:
state formulas evaluated on states e.g. ⟨π⟩p
program formulas evaluated on pairs of states e.g. [p?]q

In a language that allows for infinite disjunctions the iteration operators
can be written as

⟨π∗⟩φ =
∨
n∈N

⟨π⟩nφ

B. Afshari (GU) PToTL December 2023 50 / 94

Propositional Dynamic Logic

Semantics of PDL

A model M for PDL is a triple (W, {Rπ}π∈B, V) where
W is a set of worlds;
Rπ is an accessibility relation for each basic program π

V : Prop → 2W is a valuation of propositions

The satisfaction relation is analogous to that of normal modal logic:

M,w |=p iff w ∈ V (p)

M,w |=¬φ iff M,w ̸|= φ

M,w |=φ ∨ ψ iff M,w |= φ or M,w |= ψ

M,w |=[π]φ iff for all w′ such that (w,w′) ∈ Rπ then M,w′ |= φ

Notice that for the definition above we are invoking the accessibility
relation Rπ where π can be a non-basic program.

B. Afshari (GU) PToTL December 2023 51 / 94

Propositional Dynamic Logic

Accessibility for complex programs

Rπ1∪π2 :=Rπ1 ∪Rπ2

Rπ1;π2 :=Rπ1 ◦Rπ2 = {(u,w) | ∃v.(u, v) ∈ Rπ1 ∧ (v, w) ∈ Rπ2}
Rπ∗ :=(Rπ)

∗ i.e. the reflexive transitive closure of Rπ

Rφ? :={(w,w) |M,w |= φ}

These capture the intended program semantics that we discussed earlier
and frames that satisfy these are called regular frames.

B. Afshari (GU) PToTL December 2023 52 / 94

Propositional Dynamic Logic

Failure of compactness

Consider the infinite set S consisting of formulas

⟨π∗⟩p, ¬p, [π]¬p, [π][π]¬p, [π][π][π]¬p, . . .

It is easy to satisfy every finite subset of S but the entire set is
unsatisfiable.

B. Afshari (GU) PToTL December 2023 53 / 94

Propositional Dynamic Logic

Finitry axiomatisation

Axioms:
1 propositional tautologies
2 [π](φ→ ψ) → ([π]φ→ [π]ψ)

3 [π](φ ∧ ψ) ↔ ([π]φ ∧ [π]ψ)

4 [π1 ∪ π2]φ↔ ([π1]φ ∧ [π2]φ)

5 [π1;π2]φ↔ ([π1][π2]φ)

6 [φ?]ψ ↔ (φ→ ψ)

7
(
φ ∧ [π][π∗]φ

)
↔ [π∗]φ

8
(
φ ∧ [π∗](φ→ [π]φ)

)
→ [π∗]φ

Rules:
MP from ⊢ φ and ⊢ φ→ ψ infer ⊢ ψ
Nec from ⊢ φ we infer ⊢ [π]φ

B. Afshari (GU) PToTL December 2023 54 / 94

Propositional Dynamic Logic

Test-free PDL

The axiom
[φ?]ψ ↔ (φ→ ψ)

seems to suggest that for every formula of PDL there may be a test-free
formula equivalent to it.

But test-free PDL is less expressive than PDL. The following PDL
formula does not have a test-free equivalent:

⟨(p?;π)∗;¬p?⟩⟨π⟩p

B. Afshari (GU) PToTL December 2023 55 / 94

Propositional Dynamic Logic

Completness

Theorem
PDL is sound and complete for regular frames.

Soundness is immediate (Axiom 8 needs a little work).
Completeness via canonical model construction is problematic as the
canonical model cannot be made regular. A strengthening of the
filtration method is employed.

In fact filtration will give us more:

Theorem
PDL has the small model property: a satisfiable PDL formula φ is
guaranteed to have a model with size no more than 2size(φ) where size(φ)
is the number of symbols in φ.

B. Afshari (GU) PToTL December 2023 56 / 94

Propositional Dynamic Logic

Some words on filtration method

Filtration is model construction techniques that allows us to
(1) build finite models (if they exists)
(2) accommodate for logics that lack compactness

For the filtration method one generally uses the subformulas of a formula
φ to define “filters”. In the case of PDL, we need a more general notion
of subformulas called Fischer-Ladner Closure of formulas.

B. Afshari (GU) PToTL December 2023 57 / 94

Propositional Dynamic Logic

Fischer-Ladner closure of PDL formulas

A set of PDL-formulas Σ is closed under FL if
1 φ ∨ ψ ∈ Σ implies φ ∈ Σ and ψ ∈ Σ

2 ¬φ ∈ Σ implies φ ∈ Σ

3 for basic program a basic: [a]φ ∈ Σ implies φ ∈ Σ

4 [π1 ∪ π2]φ implies [π1]φ ∈ Σ and [π2]φ ∈ Σ

5 [π1;π2]φ ∈ Σ implies [π1][π2]φ ∈ Σ and [π2]φ ∈ Σ

6 [π∗]φ ∈ Σ implies [π;π∗]φ ∈ Σ

7 [φ?]ψ ∈ Σ implies φ ∈ Σ

B. Afshari (GU) PToTL December 2023 58 / 94

Propositional Dynamic Logic

Filtration model

We take
- the singleton set {φ} and generate the FL-closed set Σ containing φ
- the Kripke structure M (which satisfies φ but may be infinite) and

quotient it by the relation

u ≡ v iff for every φ ∈ Σ we have M, u |= φ iff M, v |= φ

Define a filtration model M′ = (W ′, R′, V ′) by setting
(i) W ′ = {[w] : w ∈W}
(ii) for basic program a:

[u]R′
a[v] iff ∃u0 ∈ [u] and ∃v0 ∈ [v] s.t. u0Rav0

(iii) V ′(p) = {[w] : M, w |= p} for every p ∈ Σ.
To complete the proof we need to establish that for every ψ ∈ Σ

M′, [w] |= ψ iff M, w |= ψ

B. Afshari (GU) PToTL December 2023 59 / 94

Propositional Dynamic Logic

Example 1

~
-Y

-
1

·
-

-
4

T
e
·

a
1

E
S
of

s

i
0
1

-
A·

W
W

of
W

·
A

u
E

m

=
A

·.
F

ge↑
L

N
o

E
"

s
s

W

B. Afshari (GU) PToTL December 2023 60 / 94

Propositional Dynamic Logic

Example 2

B. Afshari (GU) PToTL December 2023 61 / 94

Propositional Dynamic Logic

Exercise

1 The Fischer-Ladner closure of a formula {φ}, denoted FL(φ) is the
smallest set containing the formula φ and closed under 1–7. Show
FL(φ) is a finite set.

2 Let M = (W, {Rπ}π∈Π) be a frame. Prove for π1, π2, π ∈ Π
1 M |= ⟨π1;π2⟩φ↔ ⟨π1⟩⟨π2⟩φ if and only if Rπ1;π2

= Rπ1
◦Rπ2

2 M |= ⟨π1 ∪ π2⟩φ↔ ⟨π1⟩φ ∨ ⟨π2⟩φ if and only if Rπ1∪π2
= Rπ1

∪Rπ2

3 If Rπ∗ = (Rπ)
∗ then M |= φ ∨ ⟨π⟩⟨π∗⟩φ↔ ⟨π∗⟩φ

4 If Rπ∗ = (Rπ)
∗ then M |= [π∗](φ→ [π]φ) → (φ→ [π∗]φ)

5 If M |= φ ∨ ⟨π⟩⟨π∗⟩φ→ ⟨π∗⟩φ then (Rπ)
∗ ⊆ Rπ∗ .

3 Work out what Segerberg’s axiom [π∗](φ→ [π]φ) → (φ→ [π∗]φ)
is stating.

B. Afshari (GU) PToTL December 2023 62 / 94

Cyclic and Ill-founded Proofs

Section 5

Cyclic and Ill-founded Proofs

B. Afshari (GU) PToTL December 2023 63 / 94

Cyclic and Ill-founded Proofs

Proof Systems à la Hilbert

A proof of a sequent Γ in a given system S is a finite tree in which
leaves are labelled by axioms, the labelling of inner nodes respect the
inference rules of S , and the root is labelled by Γ.

But these ‘concrete’ proofs are hard to produce because of
non-determinism
induction ‘axioms’

B. Afshari (GU) PToTL December 2023 64 / 94

Cyclic and Ill-founded Proofs

Cyclic Proofs: the core idea

Geared towards proof search, a cyclic proof formalises an infinite
decent argument.
√
2 = p/q → p2 = 2q2 → p(p− q) = q(2q − p)

√
2 = p/q = (2q − p)/(p− q)

√
2 = p/q = p′/q′ = p′′/q′′ = · · · with q > q′ > q′′ > · · ·

B. Afshari (GU) PToTL December 2023 65 / 94

Cyclic and Ill-founded Proofs

Example

A circular proof of “every natural number is either even or odd”.

E(0)

E(0) ∨O(0)

x = 0 → E(x) ∨O(x)

E(y) ∨O(y)

...
O(y) → E(y + 1)

...
E(y) → O(y + 1)

E(y + 1) ∨O(y + 1)

x = y + 1 → E(x) ∨O(x)
case dist.

E(x) ∨O(x)

∀x(E(x) ∨O(x))

Predicates used:

E(0)

E(x) := ∃y(x = 2y)

O(x) := ∃y(x = 2y + 1)

B. Afshari (GU) PToTL December 2023 66 / 94

Cyclic and Ill-founded Proofs

Non-example

⊥weak. ⊥,⊥
contr. ⊥

B. Afshari (GU) PToTL December 2023 67 / 94

Cyclic and Ill-founded Proofs

A very general definition

Definition. A cyclic proof of Γ in S is a derivation tree which can have
both axiomatic and non-axiomatic leaves as long as the latter satisfy
the property:

1 if the non-axiomatic leaf is labelled by ∆ then there is another node
labelled by ∆ which occurs earlier in the derivation tree

2 between the two occurrences of ∆ progress is made

What is progress? How is it determined?

B. Afshari (GU) PToTL December 2023 68 / 94

Cyclic and Ill-founded Proofs

Cyclic proofs for modal logic K4

Formulas p | p | φ ∧ φ | φ ∨ φ | 3φ | 2φ
Sequents Γ,∆, . . . finite sets of formulas treated as disjunction

Axioms Γ, φ, φ̄

Inference rules

Γ,⊥
⊥

Γ

Γ, φ Γ, ψ
∧

Γ, φ ∧ ψ
Γ, φ, ψ

∨
Γ, φ ∨ ψ

Γ,3Γ, φ
4

3Γ,2φ,∆

where 3Γ abbreviates {3φ1,3φ2, . . . ,3φn} for Γ = {φ1, φ2, . . . , φn}.

axiom 4: 2φ→ 22φ

Löb’s axiom: 2(2p→ p) → 2p.

B. Afshari (GU) PToTL December 2023 69 / 94

Cyclic and Ill-founded Proofs

A cyclic proof of Löb’s axiom

2p ∧ p̄,3(2p ∧ p̄), p
4

2p,3(2p ∧ p̄), p p̄,3(2p ∧ p̄), p
∧

2p ∧ p̄,3(2p ∧ p̄), p
4

3(2p ∧ p̄),2p
∨

3(2p ∧ p̄) ∨2p

Theorem (Shamkanov 2014)
K4 + circularity = GL

where GL is Gödel-Löb logic axiomatisable by

Boolean tautologies + 2-distribution + Löb axiom + MP

B. Afshari (GU) PToTL December 2023 70 / 94

Cyclic and Ill-founded Proofs

An example involving fixed points

p is reachable R =µ p ∨3R

p is reachable in an even number of steps E =µ p ∨33E

p is reachable in an odd number of steps O =µ 3(p ∨3O)

The following is valid:
R→ E ∨O

R→ E,O
3

3R→ p,3E,3O p→ · · · p · · ·
∨l

(3R ∨ p) → p,3E,3O
R,∨r

R→ 3E, (p ∨3O)
3

3R→ p,33E,3(p ∨3O)
O

3R→ p,33E,O p→ p,33E,O
∨l,∨r

(p ∨3R) → (p ∨33E), O
R,E

R→ E,O

B. Afshari (GU) PToTL December 2023 71 / 94

Cyclic and Ill-founded Proofs

Proof by induction vs cyclic proofs

principle of induction
local
non-algorithmic

principle of infinite decent
global
algorithmic
symmetric treatment of inductive
and co-inductive properties

B. Afshari (GU) PToTL December 2023 72 / 94

Modal µ-calculus

Section 6

Modal µ-calculus

B. Afshari (GU) PToTL December 2023 73 / 94

Modal µ-calculus

Modal Logic revisited

Syntax: p | p̄ | φ ∧ φ | φ ∨ φ | 2φ | 3φ

Semantics: For directed labelled graph T = (S,→, λ):

∥p∥T = {u ∈ S | p ∈ λ(u)}
∥φ ∧ ψ∥T = ∥φ∥TV ∩ ∥ψ∥T

∥2φ∥T = {u ∈ S | for all v, if u→ v then v ∈ ∥φ∥T }

Examples: q ∨3q ∨33q; 2 · · ·2︸ ︷︷ ︸
n

3p.

Expressive limitation: properties along arbitrary (finite or infinite) paths
in a structure cannot be presented

Infinite path quantification:
1 s |=

∨
n3

nq – q is reachable from s

2 s |=
∧

n2
n3p – All paths from s always satisfy 3p

B. Afshari (GU) PToTL December 2023 74 / 94

Modal µ-calculus

Fixed point quantifiers

1 s |= q ∨3q ∨33q ∨ · · · iterating x 7→ q ∨3x on ⊥

Given φ(x) (positive in x) we introduce
µxφ = least fixed point of x 7→ φ(x) Liveness inductive
νxφ = greatest fixed point of x 7→ φ(x) Safety co-inductive

A note on expressiveness

µx(p ∨2x) : all paths contain a p
µx(p ∨2x) ̸= p ∨2p ∨22p ∨ · · ·

µx(p ∨2x) = p ∨2p ∨22p ∨ · · · ∨2ωp ∨ · · ·

B. Afshari (GU) PToTL December 2023 75 / 94

Modal µ-calculus

Modal µ-calculus

Syntax p | p | φ ∧ φ | φ ∨ φ | 3φ | 2φ | x | µxφ | νxφ

Semantics Fix T = (S,→, λ). Given φ(x) define

fφ : 2
S → 2S

U 7→ ∥φ(U)∥T

∥µxφ∥T = least fixed point of fφ ∥νxφ∥T = greatest fixed point of fφ

=
⋂

{U ⊆ S | fφ(U) ⊆ U} =
⋃

{U ⊆ S | U ⊆ fφ(U)}

Duality Define φ as the De Morgan dual of φ:

µxφ(x) = νxφ(x) ∥φ∥T = S \ ∥φ∥K

B. Afshari (GU) PToTL December 2023 76 / 94

Modal µ-calculus

Slogans and more examples

ν is looping/safety and µ is finite looping/liveness

νx(2x ∧ φ): always φ
µx(3x ∨ φ): reachable φ
µx(ψ ∨ (φ ∧2x)): φ until ψ
νx2(φ ∧ x): φ is common knowledge
νxµy

(
(p ∨3y) ∧3x

)
: a path along which p holds infinitely often

νx
(
µy(p ∨3y) ∧3x

)
: a path along which p is always reachable

B. Afshari (GU) PToTL December 2023 77 / 94

Modal µ-calculus

Hierarchies in µ-calculus

Count alternations between the two quantifiers Simple hierarchy

Count the genuine alternations between least and greatest fixed
point quantifiers (depth) Alternation hierarchy

Σ1

Π1

Σ2

Π2

Σ3

Π3

Σk

Πk

Σk+1

Πk+1

Σ0 = Π0

This hierarchy is strict (Bradfield 1998).

Connexion:
LTL can be captured by µ-calculus formulas of depth 2

CTL, PDL can be captured by alternation-free µ-calculus

CTL*: depth 3
B. Afshari (GU) PToTL December 2023 78 / 94

Modal µ-calculus

Nice properties

Expressive: LTL, PDL, CTL, CTL*

Robustly decidability: model checking, satisfiability

Closed under bisimulation — but logic is not compact.

Equivalent to: alternating parity automata, parity games

Tree Model Property: every satisfiable formula has a tree model.

Finite Model Property: every satisfiable formula has a finite model.

B. Afshari (GU) PToTL December 2023 79 / 94

Proof Systems

Section 7

Proof Systems

B. Afshari (GU) PToTL December 2023 80 / 94

Proof Systems

Sequent calculus Koz for µ-calculus

φ
φ,φ

Γ weak
Γ, φ

Γ, φ, ψ
∨

Γ, φ ∨ ψ
Γ, φ Γ, ψ

∧
Γ, φ ∧ ψ

Γ, φ
mod

3Γ,2φ

Γ, φ(σxφ(x))
σ

Γ, σxφ

Γ, φ(Γ)
ind

Γ, νxφ

Γ, φ Γ, φ
cut

Γ

Abbreviation.
“ , ” read as disjunction
Γ = {φ1, φ2, . . . , φn} finite set of formulas
3Γ := {3φ1,3φ2, . . . ,3φn}
Γ := φ1 ∧ φ2 ∧ . . . ∧ φn

σ ∈ {µ, ν}

B. Afshari (GU) PToTL December 2023 81 / 94

Proof Systems

Validity and proofs

A closed formula φ is valid iff ∥φ∥T = S for every T = (S,→, λ).

Theorem (Kozen 1983; Walukiewicz 2000)

For every closed φ we have |= φ iff Koz ⊢ φ.

Soundness Proved by Kozen (1983).
Completeness aconjuntive fragment; full µ-calculus

1 Completeness of disjunctive formulas: tableaux.
2 Provable equivalence between disjunctive and µ-formuas: tableaux,

games, automata.

B. Afshari (GU) PToTL December 2023 82 / 94

Proof Systems

Modal µ-calculus revisited

µ-formulas

p | p |φ ∧ φ |φ ∨ φ |3φ |2φ | x |µxφ | νxφ

µ-quantifier: least fixed point
φ(µxφ) → µxφ

φ(ψ) → ψ ⊢ µxφ→ ψ

ν-quantifier: greatest fixed point
νxφ→ φ(νxφ)

ψ → φ(ψ) ⊢ ψ → νxφ

ν-regenration
Γ, φ(νxφ(x))

ν
Γ, νxφ

ν-induction
Γ, φ(Γ)

ind
Γ, νxφ

B. Afshari (GU) PToTL December 2023 83 / 94

Proof Systems

Axioms and rules of proof system Fix

φ, φ̄
Γ weak

Γ, φ

Γ, φ, ψ
∨

Γ, φ ∨ ψ
Γ, φ Γ, ψ

∧
Γ, φ ∧ ψ

Γ, φ
mod

3Γ,2φ

Γ, φ(µxφ)
µ

Γ, µxφ

Γ, φ(νxφ)
ν

Γ, νxφ

A pre-tableau is a finitely branching tree in axioms and rules of Fix.

Principal and residual formulas of a rule are defined analogous to that
of modal logic.

B. Afshari (GU) PToTL December 2023 84 / 94

Proof Systems

Examples of pre-tableaux

The formula (νx3x) ∨ (µy2y) has (essentially) one pre-tableau:

νx3x, µy2y
mod

3νx3x,2µy2y
µ

3νx3x, µy2y
ν

νx3x, µy2y
∨

νx3x ∨ µy2y

B. Afshari (GU) PToTL December 2023 85 / 94

Proof Systems

Traces

Fix a pre-tableau t = ⟨S,→, λ ⟩ for Γ and a path P through t. A finite
sequence of formulas φ0, φ1, . . . , φn is a trace through P if

φi ∈ λ(P(i)) for each i ≤ n;
φi+1 = φi if φi is not principal in the rule from P(i) to P(i+ 1),
otherwise φi+1 is the residual subformula of φi in the label of
P(i+ 1).

An infinite seq. of formulas (φi)i is a trace if every initial seq. is a trace.

Lemma
For every infinite trace there exists a variable that appears infinitely
often in the trace and subsumes all other infinitely occurring variables.

The subsumption ordering on variables appearing in a formula is the
order of the the associated fixed point quantifier read from left to right.

Example in the formula µxνy.(3x ∨ p) ∧3y the variable x subsumes y,
in notation x ≤ y.

B. Afshari (GU) PToTL December 2023 86 / 94

Proof Systems

Example of traces

νx3x, µy2y
mod

3νx3x,2µy2y
µ

3νx3x, µy2y
ν

νx3x, µy2y
∨

νx3x ∨ µy2y

νx3x, µy2y
mod

3νx3x,2µy2y
µ

3νx3x, µy2y
ν

νx3x, µy2y
∨

νx3x ∨ µy2y

B. Afshari (GU) PToTL December 2023 87 / 94

Proof Systems

µ-traces and ν-traces

In each infinite trace the unique variable identified by the lemma will be
referred to as the “most significant variable” of the trace.

We call an infinite trace
a µ-trace if its most significant variable is a µ-variable
a ν-trace if its most significant variable is a ν-variable

A pre-tableau is a tableau if
1 the sequent at each leaf is an axiom, and
2 every infinite path contains a ν-trace (progressive thread).

B. Afshari (GU) PToTL December 2023 88 / 94

Proof Systems

Examples of µ and ν traces

νx3x, µy2y
mod

3νx3x,2µy2y
µ

3νx3x, µy2y
ν

νx3x, µy2y
∨

νx3x ∨ µy2y

νx3x, µy2y
mod

3νx3x,2µy2y
µ

3νx3x, µy2y
ν

νx3x, µy2y
∨

νx3x ∨ µy2y

Question What is the subsumption order? What kind of traces do we
have here?

B. Afshari (GU) PToTL December 2023 89 / 94

Proof Systems

Another example

It is not hard to check (semantically) that the following formula is valid.

µxνyφ(x, y) → νyµxφ(x, y)

Let ψ1 := νxµyφ(x, y) and ψ2 := νzµwφ(z,w).

µyφ(ψ1, y), µwφ(w, ψ2)
νx

ψ1, µwφ(w, ψ2) µyφ(ψ1, y), ψ2

...
φ(ψ1, µyφ(ψ1, y)), φ(µwφ(w, ψ2), ψ2) µy, µw

µyφ(ψ1, y), µwφ(z, ψ2)
νz

µyφ(ψ1, y), ψ2
νx

ψ1, ψ2

Question What is the subsumption order? What kind of traces do we
have here? x ≤ y ≤ z ≤ w ≤ · · · .

B. Afshari (GU) PToTL December 2023 90 / 94

Proof Systems

Tableaux characterisation of validity

Theorem (Niwinski, Walukiewicz 1996)
For every closed formula φ, there exists a tableau-proof for φ iff φ is
valid.

Theorem (Jungteerapanich, 2009; Stirling, 2014)

φ is valid if and only if there is a regular/cyclic proof (in the axioms
and rules of Fix).

Some words on regularisation . . .

B. Afshari (GU) PToTL December 2023 91 / 94

Proof Systems

Virtues of cyclic approach

proof search
decidability
interpolation
applications in other areas such as databases

...

B. Afshari (GU) PToTL December 2023 92 / 94

Proof Systems

State-of-the-art

Cyclic proofs have been investigated for many logics including:
First-order logic with inductive definitions (Brotherston, 2005;
Brotherston and Simpson, 2011; Berardi and Tatsuta, 2019)
Arithmetic (Simpson, 2017; Berardi and Tatsuta, 2017; Das, 2019)
Linear logic (Baelde et al., 2016; De and Saurin, 2019)
Modal and dynamic logics (Sprenger and Dam, 2003;
Jungteerapanich, 2009; Shamkanov, 2014; Stirling, 2014; Kokkinis
and Studer, 2016; Afshari and Leigh, 2017; Enqvist et al., 2019;
Afshari and Leigh, 2020)
Program semantics (Santocanale, 2002; Docherty and Rowe,
2019)
Automated theorem proving (Brotherston, Gorogiannis, et al.,
2012; Rowe and Brotherston, 2017; Tellez and Brotherston, 2020)

B. Afshari (GU) PToTL December 2023 93 / 94

Proof Systems

Possible research questions

cyclic proofs for extension of modal logic with
converse modalities
nominals
counting

cyclic proofs of fragment guarded fixed point logics
cyclic proofs for PDL
intuitionistic cycles
higher type cycles
higher order cycles

What sort of questions?
designing sound (and complete) axiomatisation
devising proof sreach algorithms
investigating metalogical properties such as consistency,
interpolation, cut-elimination
B. Afshari (GU) PToTL December 2023 94 / 94

	Motivating example
	Modal Logic
	Linear Time Temporal Logic
	Propositional Dynamic Logic
	Cyclic and Ill-founded Proofs
	Modal -calculus
	Proof Systems

