Modal Logic

ANU Logic Summer School

Jim de Groot

6. 7 & 8 December 2023

National Iniversity

Overview

Yesterday

- Language and semantics of modal logic
- Other modal operators
- Correspondence

V

- Translation into first-order logic
- Bisimulations
- Hennessy-Milner theorems

Today

- Constructing ω -saturated models
- Van Benthem characterisation theorem
- Variations

Modal Logic

Kripke models revisited

The language FOL

One binary predicate RA unary predicate P for each $p \in Prop$

Kripke model for ML	Model for FOL	
$\mathfrak{M}=(W,R,V)$	$\mathcal{M} = (D_{\mathcal{M}}, R_{\mathcal{M}}, \{P_{\mathcal{M}}\})$	
Set of worlds	Domain	
Binary relation R	Interpretation $R_{\mathcal{M}}$ of R	
Valuation $V(p)$ of p	Interpretation $P_{\mathcal{M}}$ of P	

Conclusion

Kripke models coincide with models for FOL

(BRV: §2.4)

Notation

- For $\varphi \in ML$, we write $\mathfrak{M}, w \Vdash \varphi$ if φ holds at w
- For $\alpha \in FOL$, we write $\mathfrak{M} \models \alpha$ if \mathfrak{M} is a model for α
- If $\alpha \in FOL$ has one free variable x, then we write $\mathfrak{M} \models \alpha[w]$ if \mathfrak{M} is a model for α with x interpreted as w

Standard translation

$$\operatorname{st}_x: \mathit{ML} \to \mathit{FOL} \ \mathrm{s.t.} \ \operatorname{st}_x(\varphi) \in \mathit{FOL} \ \mathrm{has} \ \mathrm{one} \ \mathrm{free} \ \mathrm{variable} \ x$$

Goal

$$\mathfrak{M}, w \Vdash \varphi \quad \text{iff} \quad \mathfrak{M} \models \mathsf{st}_{\mathsf{x}}(\varphi)[w]$$

Proposition letters

$$\operatorname{st}_{\scriptscriptstyle X}(p) := P_{\scriptscriptstyle X}$$

$$\mathfrak{M}, w \Vdash p \iff w \in V(p)$$
$$\iff w \in P_{\mathfrak{M}} \iff \mathfrak{M} \models Px[w]$$

(BRV: §2.4)

Definition

Recursively define $st_x : ML \to FOL$ by

$$\operatorname{st}_{x}(p) := Px$$

 $\operatorname{st}_{x}(\top) := (x = x)$

$$\operatorname{\mathsf{st}}_{\mathsf{x}}(\neg\varphi) := \neg \operatorname{\mathsf{st}}_{\mathsf{x}}(\varphi)$$

$$\mathsf{st}_{\mathsf{x}}(\varphi \wedge \psi) := \mathsf{st}_{\mathsf{x}}(\varphi) \wedge \mathsf{st}_{\mathsf{x}}(\psi)$$

$$\mathsf{st}_{\mathsf{x}}(\Box \varphi) := \forall y (\mathsf{xRy} \to \mathsf{st}_{\mathsf{y}}(\varphi))$$

Theorem

$$\mathfrak{M}, w \Vdash \varphi \quad \text{iff} \quad \mathfrak{M} \models \mathsf{st}_{\mathsf{x}}(\varphi)[w]$$

Proof

By induction. Base cases okay.

$$\neg \varphi$$

$$\mathfrak{M}, w \Vdash \neg \varphi \iff \mathfrak{M}, w \not\Vdash \varphi \iff \mathfrak{M} \not\models \mathsf{st}_{\mathsf{x}}(\varphi)[w] \iff \mathfrak{M} \models \neg \mathsf{st}_{\mathsf{x}}(\varphi)[w]$$

(BRV: §2.4)

Theorem

$$\mathfrak{M}, w \Vdash \varphi \quad \text{iff} \quad \mathfrak{M} \models \mathsf{st}_{\mathsf{x}}(\varphi)[w]$$

Proof

By induction. Base cases okay.

 $\neg 4$

$$\mathfrak{M}, w \Vdash \neg \varphi \iff \mathfrak{M}, w \not\Vdash \varphi \iff \mathfrak{M} \not\models \mathsf{st}_{\mathsf{x}}(\varphi)[w] \iff \mathfrak{M} \models \neg \, \mathsf{st}_{\mathsf{x}}(\varphi)[w]$$

Exercise 7

Prove the case for $\Box \varphi$

- Assume $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M} \models \mathsf{st}_{\mathsf{x}}(\varphi)[w]$ for all x, w
- Prove $\mathfrak{M}, w \Vdash \Box \varphi$ iff $\mathfrak{M} \models \operatorname{st}_{\kappa}(\Box \varphi)[w]$

(BRV: §2.4)

Exercise 7

Prove the case for $\square \varphi$

- Assume $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M} \models \mathsf{st}_{\mathsf{x}}(\varphi)[w]$ for all x, w
- Prove $\mathfrak{M}, w \Vdash \Box \varphi$ iff $\mathfrak{M} \models \mathsf{st}_*(\Box \varphi)[w]$

Proof

We have:

$$\mathfrak{M}, w \Vdash \Box \varphi \iff \forall v \in W(wRv \to \mathfrak{M}, v \Vdash \varphi)$$

$$\iff \forall v \in W(wRv \to \mathsf{st}_x(\varphi)[v])$$

$$\iff \forall v \in W(wRv \to \mathsf{st}_v(\varphi))$$

$$\iff \mathsf{st}_x(\Box \varphi)[w]$$

Tense modal logic

Recall that tense logic TL extends ML with operators \blacksquare (and \spadesuit)

Exercise 8

- (a) Extend st_{x} to a map $\operatorname{st}_{x}: TL \to FOL$
- (b) Prove that $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M} \models \mathsf{st}_{\mathsf{x}}(\varphi)[w]$ for all $\varphi \in TL$

Bisimulations

Bisimulations

(BRV: §2.2)

A bisimulation between $\mathfrak{M}=(W,R,V)$ and $\mathfrak{M}'=(W',R',V')$ is $B\subseteq W\times W'$ s.t.

• $w \in V(p)$ iff $w' \in V'(p)$, for all $(w, w') \in B$

Write $w \rightleftharpoons w'$ if wBw' for some bisimulation

Example

11

Modal Logic Jim de Groot

Bisimulations

(BRV: §2.2)

Exercise 9

Find a bisimulation between the following two models:

Exercise 10

12

Prove that x_0 and x'_0 are not bisimilar:

Modal Logic Jim de Groot

Some properties of bisimulations

A bisimulation between $\mathfrak{M}=(W,R,V)$ and $\mathfrak{M}'=(W',R',V')$ is $B\subseteq W\times W'$ s.t.

- $w \in V(p)$ iff $w' \in V'(p)$, for all $(w, w') \in B$
- If wBw' and wRv then $\exists v' \in W'$ s.t. w'R'v' and vBv'
- If wBw' and w'R'v' then $\exists v \in W$ s.t. wRv and vBv'

Exercise 11

Let B, D be bisimulations between \mathfrak{M} and \mathfrak{M}' , and S a bisimulation between \mathfrak{M}' and \mathfrak{M}'' . Show that the following are bisimulations as well:

- (a) $B \cup D$ (and what about $B \cap D$?)
- (b) $B^{-1} = \{(w', w) \mid (w, w') \in B\}$
- (c) $B \circ S = \{(w, w'') \mid \exists x' \text{ s.t. } (w, x') \in B \text{ and } (x', w'') \in S\}$
- (d) $id_{\mathfrak{M}} = \{(w, w) \mid w \in \mathfrak{M}\}$

The Hennessy-Milner property

Adequacy

(BRV: §2.2)

Theorem

If
$$\mathfrak{M}, w \rightleftharpoons \mathfrak{M}', w'$$
 then $\mathfrak{M}, w \leftrightsquigarrow \mathfrak{M}', w'$

Proof

We prove
$$\mathfrak{M}, w \Vdash \varphi$$
 iff $\mathfrak{M}', w' \Vdash \varphi$ by induction on φ

$$\varphi = p$$
 B

 $\varphi = p$ By definition

$$\varphi = \neg \varphi'$$

$$\varphi = \neg \varphi' \quad \mathfrak{M}, w \Vdash \neg \varphi' \text{ iff } \mathfrak{M}, w \not\Vdash \varphi' \text{ iff (IH) } \mathfrak{M}', w' \not\Vdash \varphi' \text{ iff } \mathfrak{M}', w' \sqcap \neg \varphi'$$

$$\varphi = \varphi_1 \wedge \varphi_2 \quad \dots$$

$$\Psi_2$$
 ...

$$\varphi = \Box \varphi'$$

 $\varphi = \Box \varphi'$ Suppose $\mathfrak{M}, w \Vdash \Box \varphi'$. If $(w', v') \in R'$ then $v' \Vdash \varphi$ because

so
$$\mathfrak{M}'$$
, $w' \Vdash \Box \varphi'$

Temporal logic

(BRV: §2.2)

Exercise 12

- (a) Adapt the definition of a bisimulation so it preserves and ◆
- (b) Prove that $\mathfrak{M}, w \rightleftharpoons_{\blacksquare \spadesuit} \mathfrak{M}', w'$ implies $\mathfrak{M}, w \leftrightsquigarrow_{\blacksquare \spadesuit} \mathfrak{M}', w'$

We define $\rightleftharpoons_{\blacksquare \spadesuit}$ and $\leadsto_{\blacksquare \spadesuit}$ as expected.

The Hennessy-Milner property

(BRV: §2.2)

Adequacy

Bisimilarity implies modal equivalence:

$$\mathfrak{M}, w \rightleftharpoons \mathfrak{M}', w' \text{ implies } \mathfrak{M}, w \leftrightsquigarrow \mathfrak{M}', w'$$

Definition

A class K of models is called a Hennessy-Milner class if

$$\mathfrak{M}, w \rightleftharpoons \mathfrak{M}', w'$$
 if and only if $\mathfrak{M}, w \leftrightsquigarrow \mathfrak{M}', w'$

Theorem

The image-finite models form a Hennessy-Milner class

Image-finite models

(BRV: §2.2)

Theorem

The image-finite models form a Hennessy-Milner class

Proof Claim Let \mathfrak{M} , \mathfrak{M}' be image-finite models \iff is a bisimulation

$$\mathfrak{M}, \mathbf{v} \Vdash \varphi_1 \text{ and } \mathfrak{M}', \mathbf{v}_1' \not\Vdash \varphi_1$$

 $\mathfrak{M}, \mathbf{v} \Vdash \varphi_2 \text{ and } \mathfrak{M}', \mathbf{v}_2' \not\Vdash \varphi_2$
 \vdots
 $\mathfrak{M}, \mathbf{v} \Vdash \varphi_n \text{ and } \mathfrak{M}', \mathbf{v}_n' \not\Vdash \varphi_n$

But then:

$$\mathfrak{M}, w \Vdash \Diamond(\varphi_1 \wedge \cdots \wedge \varphi_n)$$
 and $\mathfrak{M}', w' \not\Vdash \Diamond(\varphi_1 \wedge \cdots \wedge \varphi_n)$

2

Modally saturated models

$$\begin{split} \mathfrak{M}, \mathbf{v} \Vdash \varphi_1 \text{ and } \mathfrak{M}', \mathbf{v}_1' \not\Vdash \varphi_1 \\ \mathfrak{M}, \mathbf{v} \Vdash \varphi_2 \text{ and } \mathfrak{M}', \mathbf{v}_2' \not\Vdash \varphi_2 \\ & \vdots \\ \mathfrak{M}, \mathbf{v} \Vdash \varphi_n \text{ and } \mathfrak{M}', \mathbf{v}_n' \not\Vdash \varphi_n \end{split}$$

Definition

A model $\mathfrak{M}' = (W', R', V')$ is m-saturated if for all $w' \in W'$:

If $\Sigma \subseteq ML$ and every finite $\Sigma' \subseteq \Sigma$ is satisfied at some $v' \in R[w']$, then Σ is satisfied at some $v' \in R[w']$.

Theorem

The m-saturated models form a Hennessy-Milner class

The Hennessy-Milner property

Fxercise 13 Prove that the m-saturated models form a Hennessy-Milner class

Exercise 14 Give a model that is modally saturated but not image-finite

Exercise 15 Prove that for m-saturated models \mathfrak{M} and \mathfrak{M}' :

 $\mathfrak{M}, w \longleftrightarrow \blacktriangle \mathfrak{M}', w'$ implies $\mathfrak{M}, w \rightleftharpoons \blacktriangle \mathfrak{M}', w'$

Omega-saturated models

 ω -saturation

(BRV: §2.6)

Definition

Fix a Kripke model $\mathfrak{M}=(W,R,V)$ and $A\subseteq W$

- Let FOL[A] be the extension of FOL with constants $\{\underline{a} \mid a \in A\}$
- The model \mathfrak{M}_A extends \mathfrak{M} with $I(\underline{a}) = a \in W$

Definition

 \mathfrak{M} is ω -saturated if for every finite $A \subseteq W$ and all $\Gamma(x) \subseteq FOL[A]$: If $\mathfrak{M}_A \models \Delta$ for all finite $\Delta \subseteq \Gamma(x)$, then $\mathfrak{M}_A \models \Gamma(x)$

Proposition

Every ω -saturated model is modally saturated

ω -saturation versus modal saturation

(BRV: §2.6)

10	Δt	ın	rt i	on
\boldsymbol{L}	-		ıu	OH

Fix a Kripke model $\mathfrak{M} = (W, R, V)$ and $A \subseteq W$

- Let FOL[A] be the extension of FOL with constants $\{\underline{a} \mid a \in A\}$
- The model \mathfrak{M}_A extends \mathfrak{M} with $I(\underline{a}) = a \in W$

Definition

 \mathfrak{M} is ω -saturated if for every finite $A\subseteq W$ and all $\Gamma(x)\subseteq FOL[A]$: If $\mathfrak{M}_A\models\Delta$ for all finite $\Delta\subseteq\Gamma(x)$, then $\mathfrak{M}_A\models\Gamma(x)$

Proposition

Every ω -saturated model $\mathfrak M$ is modally saturated

Proof

Suppose $w \in W$ and $\Sigma \subseteq ML$ is finitely satisfiable in R[w]. Take $A = \{w\}$ and let $\Gamma(x) = \{R\underline{w}x\} \cup \{\operatorname{st}_x(\varphi) \mid \varphi \in \Sigma\}$. Then $\mathfrak{M}_A \models \Delta$ for all finite $\Delta \subseteq \Gamma(x)$, so $\mathfrak{M}_A \models \Gamma(x)$. It follows that Σ is satisfiable in R[w].

Overview

Yesterday

- Language and semantics of modal logic
- Other modal operators
- Correspondence

Today

- Translation into first-order logic
- Bisimulations
- Hennessy-Milner theorems

Today

- Constructing ω -saturated models
- Van Benthem characterisation theorem
- Variations

