Modal Logic

ANU Logic Summer School

Jim de Groot

6, 7 & 8 December 2023

Overview

Wednesday

- Language and semantics of modal logic
- Other modal operators
- Correspondence

Yesterday

- Translation into first-order logic
- Bisimulations
- Hennessy-Milner theorems

Today

- Constructing ω -saturated models
- Van Benthem characterisation theorem
- Variations

Bisimulations

(BRV: §2.2 and §2.5)

A bisimulation between $\mathfrak{M}=(W,R,V)$ and $\mathfrak{M}'=(W',R',V')$ is $B\subset W\times W'$ s.t.

• $w \in V(p)$ iff $w' \in V'(p)$, for all $(w, w') \in B$

Adequacy

$$\mathfrak{M}, w \Longrightarrow \mathfrak{M}', w' \text{ implies } \mathfrak{M}, w \longleftrightarrow \mathfrak{M}', w'$$

HM theorem

For the class of modally saturated models:

$$\mathfrak{M}, w \rightleftharpoons \mathfrak{M}', w'$$
 if and only if $\mathfrak{M}, w \leftrightsquigarrow \mathfrak{M}', w'$

Jim de Groot

Making models omega-saturated

 ω -saturation

(BRV: §2.6)

Definition

Fix a Kripke model $\mathfrak{M} = (W, R, V)$ and $A \subseteq W$

- Let FOL[A] be the extension of FOL with constants $\{\underline{a} \mid a \in A\}$
- The model \mathfrak{M}_A extends \mathfrak{M} with $I(\underline{a}) = a \in W$

Definition

 \mathfrak{M} is ω -saturated if for every finite $A \subseteq W$ and all $\Gamma(x) \subseteq FOL[A]$: If $\mathfrak{M}_A \models \Delta$ for all finite $\Delta \subseteq \Gamma(x)$, then $\mathfrak{M}_A \models \Gamma(x)$

Proposition

Every ω -saturated model is modally saturated

Ultrafilters (BRV: §2.6)

Definition

An ultrafilter over a set I is a nonempty subset $U \subseteq \mathcal{P}I$ such that

- I ∈ U
- If $a, b \in U$ then $a \cap b \in U$
- For all $a \in \mathcal{P}I$, either $a \in U$ or $I \setminus a \in U$

Definition

An ultrafilter U on a set I is called countably incomplete if it is not closed under countable intersections

Ultraproducts of sets

(BRV: §2.6)

U-equivalence

Let $\{W_i \mid i \in I\}$ be some *I*-indexed collection of sets.

- Their product $\prod_{i \in I} W_i$ consists functions f with domain I s.t. $f(i) \in W_i$
- Two such functions f and g are U-equivalent if

$$\{i \in I \mid f(i) = g(i)\} \in U$$

• This gives an equivalence relation \sim_U on the product of the W_i , we write f_U for the equivalence class of f

Ultraproduct

The ultraproduct of sets W_i (indexed by I) is

$$\prod_{U} W_i = \{f_U \mid f \in \prod_{i \in I} W_i\}$$

lim de Groot

Ultraproducts of models

(BRV: §2.6)

Definition

The ultraproduct $\prod_{i,j} \mathfrak{M}_i$ for models $\mathfrak{M}_i = (W_i, R_i, V_i)$ is the model $\mathfrak{M}_{U} := (W_{U}, R_{U}, V_{U})$ where

- $W_U = \prod_U W_i$
- $f_{i,l}R_{i,l}g_{i,l}$ iff $\{i \in I \mid f(i)Rg(i)\} \in U$
- $f_{IJ} \in V_{IJ}(p)$ iff $\{i \in I \mid f(i) \in V_i(p)\} \in U$

Proposition

Let $\prod_{i} \mathfrak{M}$ be an ultrapower of \mathfrak{M} , and let f_w be defined by $f_w(i) = w$ for all $i \in I$. Then

$$\mathfrak{M}, \mathsf{w} \Vdash \varphi \quad \text{iff} \quad \mathfrak{M}_U, (f_\mathsf{w})_U \Vdash \varphi$$

Ultraproducts of models

(BRV: §2.6)

Definition

The ultraproduct $\prod_{i,j} \mathfrak{M}_i$ for models $\mathfrak{M}_i = (W_i, R_i, V_i)$ is the model $\mathfrak{M}_{II} := (W_{II}, R_{II}, V_{II})$ where

- $W_U = \prod_U W_i$
- $f_{i,l}R_{i,l}g_{i,l}$ iff $\{i \in I \mid f(i)Rg(i)\} \in U$
- $f_{IJ} \in V_{IJ}(p)$ iff $\{i \in I \mid f(i) \in V_i(p)\} \in U$

Proposition

Let $\prod_{i} \mathfrak{M}$ be an ultrapower of \mathfrak{M} , and let f_w be defined by $f_w(i) = w$ for all $i \in I$. Then for all $\alpha(x) \in FOL$,

$$\mathfrak{M} \models \alpha(x)[w]$$
 iff $\mathfrak{M}_U \models \alpha(x)[(f_w)_U]$

Proposition

Let U be a countably incomplete ultrafilter over a non-empty set I, and \mathfrak{M} a Kripke model. Then $\prod_{I} \mathfrak{M}$ is omega-saturated.

lim de Groot

Ultra takeaway

(BRV: §2.6)

For each Kripke model ${\mathfrak M}$ we can construct some model ${\mathfrak M}^*$ such that

- \mathfrak{M}^* is ω -saturated
- there exists an injective map

$$f:\mathfrak{M}\to\mathfrak{M}^*:w\mapsto w^*$$

that preserves truth of formulas

Bisimilarity-somewhere-else

Theorem

Proof

(BRV: §2.6)

Definition

A FOL-formulae $\alpha(x)$ is *invariant under bisimulations* if for every bisimulation B between \mathfrak{M} and \mathfrak{M}' , $(w, w') \in B$ implies

$$\mathfrak{M} \models \alpha(x)[w]$$
 iff $\mathfrak{M}' \models \alpha(x)[w']$

VB theorem

Let $\alpha(x)$ be a FOL-formula with one free variable x. TFAE:

- $\alpha(x)$ is equivalent to $\operatorname{st}_x(\varphi)$ for some $\varphi \in ML$
- $\alpha(x)$ is invariant under bisimulations

Proof

(\downarrow) Suppose $\alpha(x) = \operatorname{st}_x(\varphi)$ and $\mathfrak{M}, w \rightleftharpoons \mathfrak{M}', w'$, then:

$$\mathfrak{M}\models\mathsf{st}_\mathsf{x}(\varphi)[w]\iff \mathfrak{M}, w\Vdash\varphi\iff \mathfrak{M}', w'\Vdash\varphi\iff \mathfrak{M}'\models\mathsf{st}_\mathsf{x}(\varphi)[w']$$

(BRV: §2.6)

VB theorem

 $\alpha(x) \equiv \operatorname{st}_{x}(\varphi)$ iff $\alpha(x)$ is invariant under bisim

Proof

Suffices:
$$\underbrace{\{\operatorname{st}_{\mathsf{x}}(\varphi) \mid \varphi \in ML \text{ and } \alpha(\mathsf{x}) \models \operatorname{st}_{\mathsf{x}}(\varphi)\}}_{MOC(\alpha)} \models \alpha(\mathsf{x})$$

Then $\bigwedge X \models \alpha(x)$ for some finite $X \subseteq MOC(\alpha)$

By construction
$$\alpha(x) \models \bigwedge X$$

So
$$\alpha(x) \equiv \bigwedge X = \bigwedge \{ \operatorname{st}_{x}(\varphi_{1}), \dots, \operatorname{st}_{x}(\varphi_{n}) \}$$

$$= \operatorname{st}_{x}(\varphi_{1}) \wedge \dots \wedge \operatorname{st}_{x}(\varphi_{n})$$

$$= \operatorname{st}_{x}(\varphi_{1} \wedge \dots \wedge \varphi_{n})$$

(BRV: §2.6)

VB theorem

$$\alpha(x) \equiv \operatorname{st}_{x}(\varphi)$$
 iff $\alpha(x)$ is invariant under bisim

Suffices:
$$\underbrace{\{\operatorname{st}_{\mathsf{x}}(\varphi)\mid\varphi\in\mathit{ML}\ \mathrm{and}\ \alpha(\mathsf{x})\models\operatorname{st}_{\mathsf{x}}(\varphi)\}}_{\mathit{MOC}(\alpha)}\models\alpha(\mathsf{x})$$

assume:

$$\mathfrak{M} \models MOC(\alpha)[w]$$
 need: $\mathfrak{M} \models \alpha(x)[w]$

claim:

$$\underbrace{\{\operatorname{st}_{\mathsf{x}}(\varphi)\mid \mathfrak{M}\models \operatorname{st}_{\mathsf{x}}(\varphi)[w]\}}_{T(\mathsf{x})}\cup \{\alpha(\mathsf{x})\} \text{ is consistent}$$

If not, then by compactness there exists a finite set $Y \subseteq T(x)$ s.t.

$$Y \cup \{\alpha(x)\}\$$
is inconsistent, i.e. $\vdash \models \neg(\alpha(x) \land \bigwedge Y)$

$$\neg(\alpha(x) \land \bigwedge Y) \equiv \neg\alpha(x) \lor \neg(\bigwedge Y) \equiv \alpha(x) \to \neg \bigwedge Y$$

(BRV: §2.6)

VB theorem

 $\alpha(x) \equiv \operatorname{st}_{x}(\varphi)$ iff $\alpha(x)$ is invariant under bisim

Proof

Suffices:
$$\underbrace{\{\mathsf{st}_{\mathsf{x}}(\varphi) \mid \varphi \in \mathit{ML} \ \mathsf{and} \ \alpha(\mathsf{x}) \models \mathsf{st}_{\mathsf{x}}(\varphi)\}}_{\mathit{MOC}(\alpha)} \models \alpha(\mathsf{x})$$

assume:

$$\mathfrak{M} \models MOC(\alpha)[w]$$
 need: $\mathfrak{M} \models \alpha(x)[w]$

claim:

$$\underbrace{\{\operatorname{st}_{\mathsf{x}}(\varphi)\mid \mathfrak{M}\models \operatorname{st}_{\mathsf{x}}(\varphi)[w]\}}_{\mathcal{T}(\mathsf{x})}\cup \{\alpha(\mathsf{x})\} \text{ is consistent}$$

If not, then by compactness there exists a finite set $Y \subseteq T(x)$ s.t.

$$Y \cup \{\alpha(x)\}$$
 is inconsistent, i.e. $\models \alpha(x) \rightarrow \neg(\bigwedge Y)$.

Then
$$\alpha(x) \models \neg(\bigwedge Y)$$
 for some $Y = \{\operatorname{st}_x(\varphi_1), \dots, \operatorname{st}_x(\varphi_n)\}$, so $\alpha(x) \models \operatorname{st}_x(\neg(\varphi_1 \wedge \dots \wedge \varphi_n))$

lim de Groot

(BRV: §2.6)

$$\alpha(x) \equiv \operatorname{st}_{x}(\varphi)$$
 iff $\alpha(x)$ is invariant under bisim

17

Suffices:
$$\underbrace{\{\operatorname{st}_{\mathsf{x}}(\varphi)\mid\varphi\in\mathit{ML}\ \operatorname{and}\ \alpha(\mathsf{x})\models\operatorname{st}_{\mathsf{x}}(\varphi)\}}_{\mathit{MOC}(\alpha)}\models\alpha(\mathsf{x})$$

assume: $\mathfrak{M} \models MOC(\alpha)[w]$ need: $\mathfrak{M} \models \alpha(x)[w]$

claim:
$$\underbrace{\{\operatorname{st}_{x}(\varphi) \mid \mathfrak{M} \models \operatorname{st}_{x}(\varphi)[w]\}}_{T(x)} \cup \{\alpha(x)\} \text{ is consistent}$$

Then $\mathfrak{N} \models T(x) \cup \{\alpha(x)\}[v]$ for some \mathfrak{N}, v

$$\mathfrak{M}, w \iff \mathfrak{N}, v \qquad \mathfrak{M} \models \alpha(x)[v] \Rightarrow \mathfrak{N}^* \models \alpha(x)[v^*]$$

$$\downarrow \qquad \qquad \Rightarrow \mathfrak{M}^* \models \alpha(x)[w^*]$$

$$\mathfrak{M}^*, w^* \rightleftharpoons \mathfrak{M}^*, v^* \qquad \Rightarrow \mathfrak{M} \models \alpha(x)[w]$$

Overview

Wednesday	Language and semantics of modal logicOther modal operatorsCorrespondence	,
Yesterday	Translation into first-order logicBisimulationsHennessy-Milner theorems	,
Today	• Constructing ω -saturated models • Van Benthem characterisation theorem • Variations	,

Variations

- Tense modal logic
- Positive modal logic (Theorem 3.5 in this paper)
- Intuitionistic logic (Theorem 5.2 in the same paper)
- Instantial neighbourhood logic (Theorem 7.6 and 8.5 in this paper)
- And many more . . .

Adaptation to temporal logic

Definition:

A FOL-formulae $\alpha(x)$ is invariant under tense bisimulations if for every bisimulation B between \mathfrak{M} and \mathfrak{M}' , $(w, w') \in B$ implies

$$\mathfrak{M} \models \alpha(x)[w]$$
 iff $\mathfrak{M}' \models \alpha(x)[w']$

Theorem:

Let $\alpha(x)$ be a FOL-formula with one free variable x. TFAE:

- $\alpha(x)$ is equivalent to $st(\varphi)$ for some $\varphi \in TL$
- $\alpha(x)$ is invariant under tense bisimulations

Exercise 16

Prove this.

Van Benthem for positive modal logic

Positive modal logic

$$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi$$

 $p \in \mathsf{Prop}$

Interpretation ...

in Kripke models, the same as for ML

Standard translation

Recursively define $\operatorname{st}_{\mathsf{x}}: PML \to FOL$ by . . .

$$\operatorname{st}_{x}(\Box \varphi) := \forall y (xRy \to \operatorname{st}_{y}(\varphi))$$

 $\operatorname{st}_{x}(\diamond \varphi) := \exists y (xRy \land \operatorname{st}_{y}(\varphi))$

Theorem

$$\mathfrak{M}, w \Vdash \varphi \quad \text{iff} \quad \mathfrak{M} \models \operatorname{st}_{\mathsf{x}}(\varphi)[w]$$

for all $\varphi \in \mathit{PML}$

Simulations

A simulation from $\mathfrak{M}=(W,R,V)$ to $\mathfrak{M}'=(W',R',V')$ is a relation $S\subseteq W\times W'$ such that

• if $w \in V(p)$ then $w' \in V'(p)$, for all $(w, w') \in B$

Write $w \rightharpoonup w'$ if there exists a simulation S such that wSw'.

Observations

- Every bisimulation is a simulation
- There exist simulations that are not bisimulations

Modal Logic Jim de Groot

Simulations

A simulation from $\mathfrak{M}=(W,R,V)$ to $\mathfrak{M}'=(W',R',V')$ is a relation $S\subseteq W\times W'$ such that

• if wBw' and $w \in V(p)$ then $w' \in V'(p)$

Write $w \rightharpoonup w'$ if there exists a simulation S such that wSw'.

Theorem

If $\mathfrak{M}, w \to \mathfrak{M}', w'$ then for all $\varphi \in PML$:

$$\mathfrak{M}, w \Vdash \varphi$$
 implies $\mathfrak{M}', w' \Vdash \varphi$

Exercise num

Prove this

lim de Groot

Hennessy-Milner for simulations

Modal inclusion

If $\mathfrak{M}, w \Vdash \varphi$ implies $\mathfrak{M}', w' \Vdash \varphi$, for all $\varphi \in PML$ then we write

$$\mathfrak{M}, w \leadsto \mathfrak{M}', w'$$

Positive HM classes

A class K of Kripke model is a positive Hennessy-Milner class if

 $\mathfrak{M}, w \rightharpoonup \mathfrak{M}', w'$ if and only if $\mathfrak{M}, w \rightsquigarrow \mathfrak{M}', w'$

Theorem

The class of image-finite models is a positive Hennessy-Milner class

Exercise num

Prove this theorem

Van Benthem for positive modal logic

Definition

A FOL-formulae $\alpha(x)$ is preserved by simulations if for every simulation S from \mathfrak{M} to \mathfrak{M}' , $(w, w') \in S$ implies

$$\mathfrak{M} \models \alpha(x)[w]$$
 implies $\mathfrak{M}' \models \alpha(x)[w']$

Theorem

Let $\alpha(x)$ be a FOL-formula with one free variable x. TFAE:

- $\alpha(x)$ is equivalent to $st(\varphi)$ for some $\varphi \in ML^+$
- $\alpha(x)$ is preserved by simulations

Exercise 17

prove this :-)

Van Benthem for intuitionistic logic

Positive logic + strict implication

Language PL₃

$$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \dashv \varphi$$

 $p \in \mathsf{Prop}$

Interpretation ...

in Kripke models, the same as for ML

Observation

Restricting to reflexive transitive Kripke models gives intuitionistic logic

Standard translation

Recursively define $\operatorname{st}_x: PL_{\operatorname{\dashv}} \to FOL$ by . . .

$$\operatorname{st}_{\mathsf{x}}(\varphi \dashv \psi) := \forall \mathsf{y}((\mathsf{x}\mathsf{R}\mathsf{y} \wedge \operatorname{st}_{\mathsf{y}}(\varphi)) \to \operatorname{st}_{\mathsf{y}}(\psi))$$

Theorem

$$\mathfrak{M}, w \Vdash \varphi \quad \text{iff} \quad \mathfrak{M} \models \mathsf{st}_{\mathsf{x}}(\varphi)[w]$$

for all $\varphi \in PL_{\dashv}$

lim de Groot

Intuitionistic simulations

An intuitionistic bisimulation from $\mathfrak{M}=(W,R,V)$ to $\mathfrak{M}'=(W',R',V')$ is a pair of relations $S\subseteq W\times W'$ and $T\subseteq W'\times W$ such that

- if wSw' and $w \in V(p)$ then $w' \in V'(p)$
- if w'Tw and $w' \in V'(p)$ then $w \in V(p)$

Write $w \rightleftharpoons_{\exists} w'$ if there exists a simulation S such that wSw'.

Theorem

If $\mathfrak{M}, w \rightharpoonup \mathfrak{M}', w'$ and $\mathfrak{M}, w \Vdash \varphi$ then $\mathfrak{M}', w' \Vdash \varphi$, for all $\varphi \in PL_{\exists}$

Van Benthem for *PL*₋₂

Definition

A FOL-formulae $\alpha(x)$ is preserved by simulations if for every intuitionistic simulation (S, T) from \mathfrak{M} to \mathfrak{M}' , $(w, w') \in S$ implies

$$\mathfrak{M} \models \alpha(x)[w]$$
 implies $\mathfrak{M}' \models \alpha(x)[w']$

Theorem

Let $\alpha(x)$ be a FOL-formula with one free variable x. TFAE:

- $\alpha(x)$ is equivalent to $st(\varphi)$ for some $\varphi \in PL_{\exists}$
- $\alpha(x)$ is preserved by intuitionistic bisimulations

Theorem

Let $\alpha(x)$ be a FOL-formula with one free variable x. TFAE:

- $\alpha(x)$ is equivalent over preordered models to $st(\varphi)$ for some $\varphi \in PL_{\exists}$
- $\alpha(x)$ is preserved by intuitionistic bisimulations

lim de Groot

Advertisement

For logic projects

Jim de Groot

Thank you

