
LSS 2018: Computability and Incompleteness
1. Models of Computation

Michael Norrish

Michael.Norrish@data61.csiro.au

Michael Norrish (Data61) 1. Models of Computation 1 / 38

Course Outline

Five lectures:

1 Models of Computation. Turing Machines, Recursive Functions.

2 Computability Results. Halting Problem and more.

3 Logic and Computability. Undecidability of FOL.

4 Gödel’s First Incompleteness Theorem.

Representability, Indefinability of Truth.

5 Gödel’s Second Incompleteness Theorem.

Some (non-)implications.

Textbook: Logic and Computability, Boolos and Jeffrey.

Michael Norrish (Data61) 1. Models of Computation 2 / 38

Outline

1 Introduction

2 Turing Machines

3 Recursive Functions

4 Other Models

Lambda Calculus

Michael Norrish (Data61) 1. Models of Computation 3 / 38

Computation—What’s It Good For?

What can we do mechanically?

Is there a way to automatically solve interesting mathematical

problems?

Is there a way to automatically solve interesting logical problems?

Alternatively: what logical/mathematical problems can we solve

automatically?

◮ Which ones can’t we solve?

Michael Norrish (Data61) 1. Models of Computation 4 / 38

Wanted: Formal Definition of “Computer”

Desiderata:

◮ Simple. Simple models are easier to reason about.

◮ Plausible. We have to believe that the model plausibly captures

what it is to “compute”.

◮ Abstract. Not tied to unnecessarily concrete details.

Michael Norrish (Data61) 1. Models of Computation 5 / 38

Outline

1 Introduction

2 Turing Machines

3 Recursive Functions

4 Other Models

Lambda Calculus

Michael Norrish (Data61) 1. Models of Computation 6 / 38

Turing Machines

Turing’s definition of what it is to be a computer

Alan Turing

(1912–1954)

In the 1930s, a “computer” was a person who

performed (arithmetic) calculations.

Turing’s model drew inspiration from how people

calculate with pen-and-paper:

◮ they have an infinite (!) working space;

◮ they perceive and operate on small bounded

parts of that space.

Michael Norrish (Data61) 1. Models of Computation 7 / 38

Turing Machines, Informally

A Turing machine is a

◮ finite state machine (the “control”)

◮ operating on an infinite tape of “cells”

Turing machine tape-cells

◮ are either blank or filled with one of a finite set of symbols

A Turing machine state

◮ sees as input the “current” tape-cell,

◮ may
◮ alter the cell, or
◮ move to an adjacent tape-cell

◮ it also specifies the next state (based on the input)

Michael Norrish (Data61) 1. Models of Computation 8 / 38

Making Turing Machines Compute Things

Put the machine down on a tape that has been primed with an

encoding of the input.

If the machine stops and is pointing to a recognisable result on the

tape, that’s the answer.

Thus, the machine can fail in two ways:

◮ stops with bogus tape

◮ never stops

Turing machines compute partial functions.

Michael Norrish (Data61) 1. Models of Computation 9 / 38

Turing Machines and Numbers

We can work exclusively with one symbol, the “blob” (or 1).

(Remember we also have blanks (or 0) on the tape).

The number n is represented on the tape as n blobs.

TMs can compute (partial) functions N → N.

TM(n) = m when:

1 Put n blobs on tape.

2 Run TM, starting it pointing to left-most blob.

3 TM stops at leftmost position of m blobs.

(Handles 0 as input and output.)

Michael Norrish (Data61) 1. Models of Computation 10 / 38

Already, Uncomputability Rears Its Ugly Head

Turing machines are enumerable (finite controls!)

Functions N → N are uncountable.

Therefore, there must be functions that no Turing Machine can

compute.

Surely it’s not reasonable to allow infinite programs. . .

Michael Norrish (Data61) 1. Models of Computation 11 / 38

So What Can Turing Machines Compute?

Numeric calculations: addition, subtraction, multiplication, pairing. . .

(example to follow)

Numeric tests: “is zero?”, “is even?”, “is prime?”. . .

Operations on other data types: encoding, decoding . . .

Michael Norrish (Data61) 1. Models of Computation 12 / 38

Turing Machine Addition in Seven States

0,L
0,R

1,R

1, 0 0,L

1,L

0,R

0, 1

0,L

Arrow label x,A means

“if you see an x, do action A (and follow arrow to next state)”

Michael Norrish (Data61) 1. Models of Computation 13 / 38

Programming Turing Machines

Turing Machines are the ultimate in low-level computing devices.

Programming them can be appealing as a puzzle.

But it’s hard to develop much modularity.

Somewhat easier if you have a simulator to play with.

Cue demo. . .

Michael Norrish (Data61) 1. Models of Computation 14 / 38

Programming Turing Machines

Turing Machines are the ultimate in low-level computing devices.

Programming them can be appealing as a puzzle.

But it’s hard to develop much modularity.

Somewhat easier if you have a simulator to play with.

Cue demo. . .

Credit to http://ironphoenix.org/tril/tm/

and Suzanne Skinner

Michael Norrish (Data61) 1. Models of Computation 14 / 38

http://ironphoenix.org/tril/tm/

Deciding Sets with Turing Machines

Turing Machines can implement “tests” on arguments.

(

Put n blobs on tape, machine whirs away, leaves

either one blob (“yes”) or no blobs behind (“no”).

)

This can be seen as the action of deciding set membership.

A set is decidable if a machine exists that always correctly says “yes”

or “no” of possible elements.

E.g., the set of prime numbers is decidable.

Michael Norrish (Data61) 1. Models of Computation 15 / 38

Unary Functions as Enumerations

A function f of type N → N can be seen as an enumeration.

The enumerated set is the range of the function.

Can insist (or not) that enumeration gives values to
successive values: if f (n) is defined, then so too must

be f (m) for all m < n.

Can insist (or not), that there are no repeats (that is, f

is injective).

Every decidable set can be enumerated:

Given input n, run decision machine on n.

If it says “yes”, return n; otherwise go into infinite loop.

Michael Norrish (Data61) 1. Models of Computation 16 / 38

Enumerations Give Semi-Decision Procedures

A semi-decision procedure for S is a machine that will correctly say

“yes” of an input n iff n ∈ S.

If we have an enumeration machine E, and want to test n,

run enumeration on successive values (0, 1 . . .) until we find an

i such that E(i) = n.

(Fast and Loose Alert: I am assuming E is a “strong” enumerator that

has no gaps in its domain.)

Michael Norrish (Data61) 1. Models of Computation 17 / 38

Semi-Decision Procedures Give Enumerations

This should be familiar:

Given input n, run decision machine on n.

If it says “yes”, return n; otherwise go into infinite loop.

The difference is that “otherwise” now includes the failure of the

machine to terminate.

(Fast and Loose Alert: I am producing an enumeration that probably

does have gaps in its domain.)

Michael Norrish (Data61) 1. Models of Computation 18 / 38

Gappy Enumerations Can Be Made Non-Gappy

Say E(n) is undefined.

Want to be able to scan ahead for an m > n where E(m) is OK.

(If there is none such, it’s OK for us to loop.)

But How?

Can’t just run E(n + 1) and wait for its answer.

Michael Norrish (Data61) 1. Models of Computation 19 / 38

Gappy Enumerations Can Be Made Non-Gappy

Say E(n) is undefined.

Want to be able to scan ahead for an m > n where E(m) is OK.

(If there is none such, it’s OK for us to loop.)

But How?

Can’t just run E(n + 1) and wait for its answer.

Need to be able to run a set of machines in parallel for

fixed number of steps.

This is called dovetailing.

Michael Norrish (Data61) 1. Models of Computation 19 / 38

The Universal Machines

There exists a universal machine U that when given as input (i, n) can

simulate the behaviour of machine i on input n.

That is, if ϕi(n) terminates with output x, so too does U(i, n).
If ϕi(n) loops, so too does U(i, n).

There also exists a stepping function that takes a machine state and

runs it for a specified number of steps.

(These facts are both extremely cool and extremely . . . obvious.)

One proof is by construction. . .

Michael Norrish (Data61) 1. Models of Computation 20 / 38

Is There Anything These Machines Can’t Do?

Church’s Thesis:
Turing Machines can compute anything that any reason-

able model of computation can compute.

No proof, but true for all models devised so far.

Michael Norrish (Data61) 1. Models of Computation 21 / 38

Outline

1 Introduction

2 Turing Machines

3 Recursive Functions

4 Other Models

Lambda Calculus

Michael Norrish (Data61) 1. Models of Computation 22 / 38

And Now For Something Completely Different

Turing Machines are so concrete!

Recursive Functions give us a way to capture computable functions

much more mathematically.

Basic Method:

◮ Construct a family of functions all of which are “obviously OK”

◮ Provide methods for making new functions from ones already “in

the family”.

Michael Norrish (Data61) 1. Models of Computation 23 / 38

First Family Group: the Primitive Recursive Functions

Functions are generally of type (N× N× · · · × N) → N

Base cases:

◮ The zero function: z(n) = 0

◮ The successor function: s(n) = n + 1

◮ Projection functions: pi,n(x1, . . . , xn) = xi

Building new from old:

◮ Composition: if each gi takes n arguments, and f takes m, then

f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is primitive recursive.

Write as Cn[f , g1, . . . , gm] (it takes n arguments)

Michael Norrish (Data61) 1. Models of Computation 24 / 38

Can Already Define Some Good Stuff

Constant functions:

Three = Cn[s,Cn[s,Cn[s, z]]]

Three(x) = s(s(s(z(x))))

= 3

Adding a constant:

AddTwo = Cn[s, s]

AddTwo(x) = s(s(x))

Michael Norrish (Data61) 1. Models of Computation 25 / 38

Can Already Define Some Good Stuff

Constant functions:

Three = Cn[s,Cn[s,Cn[s, z]]]

Three(x) = s(s(s(z(x))))

= 3

Adding a constant:

AddTwo = Cn[s, s]

AddTwo(x) = s(s(x))

None of these functions examine their arguments.

Michael Norrish (Data61) 1. Models of Computation 25 / 38

(Primitive) Recursion Makes It Even Better

If g (the “base case”) takes n arguments,

and h (the “recursive case”) takes n + 2 arguments,

then Pr[g, h] is the function f of n + 1 arguments such that

f (x1, . . . , xn, 0) = g(x1, . . . , xn)

f (x1, . . . , xn,m + 1) = h(x1, . . . , xn,m, f (x1, . . . , xn,m))

Allow n = 0, in which case g can just be a number.

Michael Norrish (Data61) 1. Models of Computation 26 / 38

Simple Arithmetic is Primitive Recursive
Addition (Plus) is Pr[p1,1,Cn[s, p3,3]]:

Pr[p1,1,Cn[s, p3,3]](x, 0) = p1,1(x)

= x

Pr[p1,1,Cn[s, p3,3]](x, y + 1) = Cn[s, p3,3](x, y,Plus(x, y))

= s(p3,3(x, y,Plus(x, y)))

= s(Plus(x, y))

Michael Norrish (Data61) 1. Models of Computation 27 / 38

Simple Arithmetic is Primitive Recursive
Addition (Plus) is Pr[p1,1,Cn[s, p3,3]]:

Pr[p1,1,Cn[s, p3,3]](x, 0) = p1,1(x)

= x

Pr[p1,1,Cn[s, p3,3]](x, y + 1) = Cn[s, p3,3](x, y,Plus(x, y))

= s(p3,3(x, y,Plus(x, y)))

= s(Plus(x, y))

Multiplication (Mult) is Pr[z,Cn[Plus, p1,3, p3,3]]:

Mult(x, y + 1) = Cn[Plus, p1,3, p3,3](x, y,Mult(x, y))

= Plus(p1,3(x, y,Mult(x, y)), p3,3(x, y,Mult(x, y)))

= Plus(x,Mult(x, y))

Michael Norrish (Data61) 1. Models of Computation 27 / 38

Some Properties of Primitive Recursive Functions

Enumerable: Each prim. rec. function is captured by a finite string.

Total: Only interesting case to consider is recursion; all such

must be total by induction on the argument that is

“recursed”.

Michael Norrish (Data61) 1. Models of Computation 28 / 38

Primitive Recursion Does Not Capture Computability
Consider the famous Ackermann function:

A(0,m) = m + 1

A(n + 1, 0) = A(n, 1)

A(n + 1,m + 1) = A(n,A(n + 1,m))

◮ Must be computable

◮ Is total (well-founded induction on lexicographic ordering of

arguments)

◮ Grows very quickly

In fact, for every prim. rec. function f , there is a J such that, for all

possible arguments x1, . . . , xk

f (x1, . . . , xk) < A(J, Σ xi)

Michael Norrish (Data61) 1. Models of Computation 29 / 38

What Are We Missing?

Ackermann’s function cannot be captured by the primitive recursive

functions.

What can we add so that it can be computed?

Michael Norrish (Data61) 1. Models of Computation 30 / 38

Introducing the Recursive Functions

Keep the formation rules for primitive recursive functions.

Add the following:

If f is a recursive function of n + 1 arguments,

then Mn[f] is a function of n arguments (x1, . . . , xn) that

returns the least m such that f (m, x1, . . . , xn) = 0.

Suddenly we’re no longer in the land of total functions!

Computationally, can view Mn[f] as a potentially unbounded search.

Michael Norrish (Data61) 1. Models of Computation 31 / 38

Is This Really Enough?

It may not be obvious that adding Mn is sufficient.

◮ Just adding something that may not terminate is not a clear

improvement.

On the other hand, it should be obvious that Mn is not implementable

with primitive recursion.

Exercise: Show you can implement Ackermann’s function by providing

a recursive function to calculate it.

Michael Norrish (Data61) 1. Models of Computation 32 / 38

Recursive Functions Are Equivalent to Turing

Machines

Each model can emulate the other.

Turing Machines can implement the recursive functions.

◮ I hope this is obvious

The recursive functions can implement Turing Machines.

◮ Perhaps not so obvious; in the next lecture!

Michael Norrish (Data61) 1. Models of Computation 33 / 38

Outline

1 Introduction

2 Turing Machines

3 Recursive Functions

4 Other Models

Lambda Calculus

Michael Norrish (Data61) 1. Models of Computation 34 / 38

Register Machines

Called abacus machines in Boolos and Jeffery.

Finite state machines with access to arbitrary number of “registers”

(fixed per program).

Registers can contain arbitrarily big numbers.

Programs can add one, subtract one and branch.

Slightly more realistic “hardware”.

Michael Norrish (Data61) 1. Models of Computation 35 / 38

The Lambda Calculus

The world’s simplest programming language:

M ::= v | M1 M2 | (λv.M)

Behaviour captured by one rule:

(λv.M)N →β M[v := N]

Apply this rule (β-reduction) wherever you can within a term;

rename bound variables to avoid capture.

Michael Norrish (Data61) 1. Models of Computation 36 / 38

The Lambda Calculus Does It All

Can represent numbers.

Can go into infinite loops:

(λx. x x)(λx. x x) →β (λx. x x)(λx. x x)

Can implement arbitrary recursion: the famous Y combinator.

Very expressive: much the easiest model to show capable of emulating

the others.

Michael Norrish (Data61) 1. Models of Computation 37 / 38

Summary

◮ Turing Machines. The “hardware guy’s model of computation”.

Also, important notions:
◮ Decidability
◮ Enumerability (= semi-decidability)

◮ Recursive functions. The “mathematician’s model of computation”.

◮ Starting with primitive recursive functions.

◮ The Lambda Calculus (briefly)

Michael Norrish (Data61) 1. Models of Computation 38 / 38

	Introduction
	Turing Machines
	Recursive Functions
	Other Models
	Lambda Calculus

