
LSS 2018: Computability and Incompleteness
3. Logic and (In)Computability

Michael Norrish

Michael.Norrish@data61.csiro.au

Michael Norrish (Data61) 3. Logic and (In)Computability 1 / 39

Outline

1 Introduction

2 Undecidability of First Order Logic

3 Gödel Numbering

4 The Logic Q

Michael Norrish (Data61) 3. Logic and (In)Computability 2 / 39

Last Time. . .

Results in Computability:

◮ Turing Machines and Recursive Functions coincide.
◮ Alternatively, each can simulate the other

◮ It’s impossible to tell if a computation will finish (Halting Problem)

◮ It’s impossible to determine if a machine/function has any

particular extensional property (Rice’s Theorem)

◮ Recursive Enumerability is the limit of computability. . .
◮ but it’s possible to say things about degrees of hardness beyond

that.

Michael Norrish (Data61) 3. Logic and (In)Computability 3 / 39

Logic and Computability

Logic is not just a tool for human use.

Automating logical reasoning is a very productive activity:

◮ software verification

◮ hardware verification

◮ mechanised mathematics

But automation happens on computers, and perhaps

computer logic is necessarily limited. . .

Michael Norrish (Data61) 3. Logic and (In)Computability 4 / 39

Outline

1 Introduction

2 Undecidability of First Order Logic

3 Gödel Numbering

4 The Logic Q

Michael Norrish (Data61) 3. Logic and (In)Computability 5 / 39

First Order Logic

Syntax:

◮ Term variables: x, y, z, . . .

◮ Function Symbols (make terms from other terms): f , g, h, . . .

◮ Predicate Symbols (make formulas of terms): P, Q, R, . . .
◮ Equality (fixed binary predicate): t1 = t2

◮ Propositional Connectives (make formulas of formulas): ∧, ¬, . . .

◮ Quantifiers (over/binding term variables): ∀x, ∃y, . . .

Function and predicate symbols have arities.

The arity of a symbol is the number of arguments it can take.

Allowing arities of zero is OK.

Michael Norrish (Data61) 3. Logic and (In)Computability 6 / 39

First Order Logic

Semantics:

◮ A closed formula is interpreted with respect to an interpretation
that

◮ specifies a domain D
◮ maps function symbols of arity n into functions Dn

→ D
◮ maps predicate symbols of arity m into predicates Dm

→ B

◮ Truth value of the closed formula is given recursively over its

structure.

For example:
◮ I(φ∧ψ) is true iff I(φ) is true and I(ψ) is true.

◮ I(∀x.φ) is true if I(φ) is true of all elements d ∈ D. (Sloppy alert!)

Write |= Φ if Φ is true in all interpretations (“valid”).

Michael Norrish (Data61) 3. Logic and (In)Computability 7 / 39

First Order Logic

FOL has Proof Systems:

◮ Axiomatic (“Hilbert”) System

◮ Natural Deduction

◮ Sequent Calculus

◮ . . .

A proof system defines derivability/provability relation ⊢

Soundness and completeness (proved in another course!):

if ⊢ Φ then |= Φ if |= Φ then ⊢ Φ

Michael Norrish (Data61) 3. Logic and (In)Computability 8 / 39

Derivable is Enumerable

Easily seen from axiomatic systems:

◮ Can enumerate all possible formulas.

◮ Can enumerate all possible instantiations of the axiom schemes.

◮ Can enumerate all possible applications of inference rules to

theorems.

Michael Norrish (Data61) 3. Logic and (In)Computability 9 / 39

Thus, There is a Semi-Decision Procedure for Validity

I wish to determine if Φ is valid.

1 Run my favourite theorem-enumerator.

2 Wait for Φ to appear . . .

3 If it does, say “Yes!”

The “Yes!” result means ⊢ Φ, and soundness means |= Φ.

Conversely, if Φ is valid, then |= Φ and completeness means ⊢ Φ, and

my enumerator will get to Φ eventually.

Michael Norrish (Data61) 3. Logic and (In)Computability 10 / 39

Not a Decision Procedure!

I want to decide validity of Φ.

How about:

1 Run my favourite theorem-enumerator.

2 If Φ appears, say “Yes!”

3 If ¬Φ appears, say “No!”

Why doesn’t this work?

Michael Norrish (Data61) 3. Logic and (In)Computability 11 / 39

Not a Decision Procedure! (continued)

[Enumerating theorems, and waiting for Φ or ¬Φ · · ·]

Example: ∀x.R(x, x) is not valid.

◮ R might be interpreted by something that is not reflexive

But: ¬(∀x.R(x, x)) (equivalent to ∃x.¬R(x, x)) is not valid either.

◮ R might be interpreted by something that is reflexive.

In general, the mistake was to imagine that 6|= Φ implied |= ¬Φ.

(Validity (|=) has a hidden universal over interpretations inside!)

Michael Norrish (Data61) 3. Logic and (In)Computability 12 / 39

Validity in First Order Logic is Not Decidable

Alonzo Church

(1903–1995)

First shown by Church.

◮ Turing’s PhD supervisor.

◮ Inventor of the λ-calculus.

◮ Author of Church’s Thesis.

Valid sentences are recursively enumerable.

Proof that valid sentences are not recursive is by reduction to the

Halting Problem.

Michael Norrish (Data61) 3. Logic and (In)Computability 13 / 39

Reduction to the Halting Problem

[As with Rice’s Theorem.]

Proof by contradiction.

Assume we can solve our problem.

Show that this results in us being able to solve the Halting Problem too.

Conclude that we can’t solve the original problem.

Michael Norrish (Data61) 3. Logic and (In)Computability 14 / 39

Reduction to the Halting Problem for FOL Validity

Assume we can decide |= Φ for all Φ

◮ We are given machine M with input n.

◮ We will determine if it halts or not.

Trick is to encode “do you halt?” in first order logic.

Michael Norrish (Data61) 3. Logic and (In)Computability 15 / 39

Encoding Turing Machine Computation in FOL

[Multiple approaches possible. This one is from B&J.]

Have two function symbols:

◮ 0 — function symbol of arity zero (stands for 0)

◮ s — function symbol of arity one (stands for successor)

Tape is indexed with integers (infinite in both directions).

Have one binary predicate per machine-state (Qi),

and one binary predicate per tape-symbol (Sj),

and binary predicate <.

◮ Qi(t, p) — at time t, machine is in state i and position p on the tape

◮ Si(t, p) — at time t, tape holds symbol i at position p

◮ i < j — i is less than j

Michael Norrish (Data61) 3. Logic and (In)Computability 16 / 39

Encoding the Initial State

[Assume initial machine state is 0 and initial input is n.]

At time t = 0, machine is initially in state 0 at tape position 0:

Q0(0, 0)

At time t = 0, tape positions 0 . . . n − 1 are filled with symbol 1:

∧

i∈0...n−1

S1(0, s
i(0))

All other tape positions are filled with symbol 0:

∀p.

∧

q∈0...n−1

p 6= q

 ⇒ S0(0, p)

Michael Norrish (Data61) 3. Logic and (In)Computability 17 / 39

Encoding the Turing Machine

i j
0,R

∀t p q. Qi(t, p) ∧ S0(t, p) ⇒

Qj(s(t), s(p)) ∧ (S0(t, q) ⇒ S0(s(t), q)) ∧

(S1(t, q) ⇒ S1(s(t), q))

i j
0, 1

∀t p q. Qi(t, p) ∧ S0(t, p) ⇒

Qj(s(t), p) ∧ S1(s(t), p) ∧

(q 6= p ∧ S0(t, q) ⇒ S0(s(t), q)) ∧

(q 6= p ∧ S1(t, q) ⇒ S1(s(t), q))

Michael Norrish (Data61) 3. Logic and (In)Computability 18 / 39

Encoding the Machine: Moving Left and Integers

With just a successor function, how do we talk about going leftwards,

even unto negative positions?

i j
0,L

∀t p q. Qi(t, s(p)) ∧ S0(t, s(p)) ⇒

Qj(s(t), p) ∧ (S0(t, q) ⇒ S0(s(t), q)) ∧

(S1(t, q) ⇒ S1(s(t), q))

Still need to assert that every number is the unique successor of

another:

∀n. ∃m. (n = s(m))∧ ∀p. (n = s(p)) ⇒ (m = p)

And properties of <:

∀x y z. (x < y ∧ y < z ⇒ x < z)∧¬(x < x)∧ x < s(x)

Michael Norrish (Data61) 3. Logic and (In)Computability 19 / 39

Encoding the Question

Have machine description, and some super-minimalist arithmetic.

Call all this ∆.

Add H:
∨

(i,j)∈H

∃t p.(Qi(t, p) ∧ Sj(t, p))

where H is set of state-symbol pairs where machine specifies no

action.

Halting Question: ∆⇒ H

Michael Norrish (Data61) 3. Logic and (In)Computability 20 / 39

Implication 1

If |= ∆⇒ H, then it is true for all interpretations

of the symbols Qi, Sj, <, 0 and s.

In particular, it is true for the “machine interpretation”

we have been using/assuming.

So the given Turing Machine does halt when given the specified input.

Michael Norrish (Data61) 3. Logic and (In)Computability 21 / 39

Implication 2

This is harder.

If the Turing Machine does halt, we need to show that |= ∆⇒ H.

◮ i.e., the statement is true in all interpretations.

Thanks to completeness, suffices to show ⊢ ∆⇒ H

If the Turing Machine halts, it does so in some number of steps, n.

Will prove our result by induction on step-count.

Michael Norrish (Data61) 3. Logic and (In)Computability 22 / 39

Descriptions of Moments of Time

A description of time t is

◮ a ground formula describing the machine and state tape at time t

◮ machine state captured by Qi(t, p)

◮ tape state captured by
◮

∧

p∈P Si(t, p) (for various Si); and
◮ ∀q. q /∈ P ⇒ S0(t, q)

Set P will be finite set of positions touched by machine so far

(including p).

Negative Tape Positions: P may include negative numbers.

If we want to write, for example, Qi(t,−n), we do it by writing:

(∃m. 0 = sn(m)∧ Qi(t,m))

Michael Norrish (Data61) 3. Logic and (In)Computability 23 / 39

Description of the End of the Run

If the machine halts in n steps at position p on the tape, in state q and

looking at symbol i, then a correct description will include:

Qq(n, p) ∧ Si(n, p)

And this will imply one of the disjuncts of H.

Michael Norrish (Data61) 3. Logic and (In)Computability 24 / 39

The Induction

For all times t ≤ n, machine description ∆ implies a correct description

of time t.

◮ Implication must be in all possible interpretations.

Proof is by induction on t.

Base case is that we have a correct description of initial state

(at t = 0).

◮ Trivially true as ∆ includes it by construction.

Michael Norrish (Data61) 3. Logic and (In)Computability 25 / 39

Induction’s Step-Case

Inductive Hypothesis: Have a correct description of time t.

(Alternatively, ∆ implies that correct description.)

◮ t + 1 ≤ n, so machine has not halted at time t.

Need to show that ∆ implies a correct description of the machine

at time t + 1.

The machine at time t is in state q, at position p and with tape state

captured by

◮

∧

p∈P Si(t, p) (for various Si); and

◮ ∀q. q /∈ P ⇒ S0(t, q)

Michael Norrish (Data61) 3. Logic and (In)Computability 26 / 39

Step-Case: Write Action

Have: Qi(t, p)∧ S0(t, p) in description of time t.

Have this in ∆:

i j
0, 1

∀t p q. Qi(t, p) ∧ S0(t, p) ⇒

Qj(s(t), p) ∧ S1(s(t), p) ∧

(q 6= p ∧ S0(t, q) ⇒ S0(s(t), q)) ∧

(q 6= p ∧ S1(t, q) ⇒ S1(s(t), q))

First two conjuncts of conclusion give us correct description of

machine-state and symbol at machine-position

Rest of required description is of rest of tape.

Michael Norrish (Data61) 3. Logic and (In)Computability 27 / 39

Step-Case: Write Action (continued)

Have: Qi(t, p)∧ S0(t, p) in description of time t.

Also have: Sj(t, p
′), for various j and p ′.

From ∆, have: ∀q. (q 6= p ∧ S0(t, q) ⇒ S0(s(t), q)) ∧

(q 6= p ∧ S1(t, q) ⇒ S1(s(t), q))

Imagine (for example) p = 2, q = −3, and S1(t, q).

◮ Handling of negative numbers means we actually have

∃q ′. 0 = s(s(s(q ′)))∧ S1(t, q
′)

◮ Want: ∃q ′. 0 = s(s(s(q ′)))∧ S1(s(t), q
′)

◮ Suffices: 0 = s(s(s(q ′)))) ⇒ q ′ 6= s(s(0))

◮ Follows from properties of <.

Michael Norrish (Data61) 3. Logic and (In)Computability 28 / 39

Step-Case: Head Movement

Have: Qi(t, p)∧ S0(t, p) in description of time t.

Have this in ∆:

i j
0,L

∀t p q. Qi(t, s(p)) ∧ S0(t, s(p)) ⇒

Qj(s(t), p) ∧ (S0(t, q) ⇒ S0(s(t), q)) ∧

(S1(t, q) ⇒ S1(s(t), q))

By first arithmetic assumption, the actual p is the successor of some p0;

will instantiate p in movement assumption above with p0.

Contents of tape are easy, except perhaps for case when move has

take machine into hitherto unvisited part of tape.

Michael Norrish (Data61) 3. Logic and (In)Computability 29 / 39

Visiting New Parts of Tape

Description at time t says

∀q. q 6= p1 ∧ · · ·∧ q 6= pm ⇒ S0(t, q)

(where pi values are visited positions to date).

Want to establish S0(s(t), p0) for new, concrete p0 value.

Movement assumption has ∀q. S0(t, q) ⇒ S0(s(t), q).

So just have to establish p0 6= p1 ∧ · · · ∧ p0 6= pm

As before, arithmetic assumptions will get us there.

Michael Norrish (Data61) 3. Logic and (In)Computability 30 / 39

Outline

1 Introduction

2 Undecidability of First Order Logic

3 Gödel Numbering

4 The Logic Q

Michael Norrish (Data61) 3. Logic and (In)Computability 31 / 39

Enumerability Inverted

Earlier claimed that “derivable is enumerable”, and

“can enumerate all possible formulas”.

If there is an onto function N → α, then there must be an injective

function α→ N.

So, we can convert formulas into natural numbers.

◮ In fact there are infinitely many ways of doing this.

Michael Norrish (Data61) 3. Logic and (In)Computability 32 / 39

Manipulating Everything Numerically

The point of turning formulas into numbers is to allow numbers to

“stand” for formulas.

◮ A system that only knows about numbers can still then have

“Formula Manipulating Power”

But “manipulation” means doing stuff to formulas, not just having them

hang around.

Manipulation means (for example):

◮ building new formulas from old ones

◮ doing instantiation of variables

◮ determining the type of a formula

◮ pulling formulas apart

Michael Norrish (Data61) 3. Logic and (In)Computability 33 / 39

Arithmetisation

Choose our Gödel Numbering so as to make it possible

(i.e., computable!) to define formula manipulations as arithmetic

functions.

We thereby provide an arithmetisation of syntax.

Computable functions will be able to manipulate more than just

numbers.

◮ even though all they’re doing is manipulating numbers

◮ (compare: modern computers as bit-twiddlers)

Michael Norrish (Data61) 3. Logic and (In)Computability 34 / 39

Outline

1 Introduction

2 Undecidability of First Order Logic

3 Gödel Numbering

4 The Logic Q

Michael Norrish (Data61) 3. Logic and (In)Computability 35 / 39

A Change of Scene

A first order logic with

◮ a fixed “non-logical language” (0, +, ·, s)

◮ a fixed intended interpretation (arithmetic)

◮ a fixed set of simple axioms

With arithmetic, the really interesting incompleteness results arise.

The logic Q is minimalist: the interesting incompleteness results about

it will apply to all stronger logics too.

Michael Norrish (Data61) 3. Logic and (In)Computability 36 / 39

Q’s Axioms

Seven Axioms:

◮ ∀x y. s(x) = s(y) ⇒ x = y

◮ ∀x. 0 6= s(x)

◮ ∀x. x 6= 0 ⇒ ∃y. x = s(y)

◮ ∀x. x + 0 = x

◮ ∀x y. x + s(y) = s(x + y)

◮ ∀x. x · 0 = 0

◮ ∀x y. x · s(y) = (x · y) + x

Interpretation: arithmetic over the natural numbers.

As axioms are true in the given interpretation, so too are all of their

consequences (by soundness of FOL).

Michael Norrish (Data61) 3. Logic and (In)Computability 37 / 39

What Q Is Not

Strong: can’t even prove that addition is commutative.

Peano Arithmetic: PA includes the axiom (scheme) for natural number

induction.

◮ Induction allows the proof of all sorts of nice properties

Michael Norrish (Data61) 3. Logic and (In)Computability 38 / 39

Summary

First Order Logic:

◮ Sound & complete, with computable rules of inference.

◮ Thus: recursively enumerable (semi-decidable).

◮ Expressive enough to capture behaviour of a Turing Machine.

◮ Thus: undecidable.

Gödel Numbering:

◮ Can convert formulas into numbers

◮ Can (computably) perform formula operations within arithmetic

The Logic Q

◮ A basis for incompleteness results to come.

Michael Norrish (Data61) 3. Logic and (In)Computability 39 / 39

	Introduction
	Undecidability of First Order Logic
	Gödel Numbering
	The Logic Q

