
LSS 2018: Computability and Incompleteness
4. Gödel’s First Incompleteness Theorem,

Tarski’s Indefinability of Truth

Michael Norrish

Michael.Norrish@data61.csiro.au

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 1 / 30

Outline

1 Introduction

2 Representability in Q

3 Undecidability, Indefinability and Incompleteness

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 2 / 30

Last Time. . .

First Order Logic:

◮ Sound & complete, with computable rules of inference.

◮ Thus: recursively enumerable (semi-decidable).

◮ Expressive enough to capture behaviour of a Turing Machine.

◮ Thus: undecidable.

Gödel Numbering:

◮ Can convert formulas into numbers

◮ Can (computably) perform formula operations within arithmetic

The Logic Q

◮ A basis for incompleteness results to come.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 3 / 30

Tying the Knot

After some technical details, today we will see that:

◮ Arithmetic is too powerful, too expressive. . .

◮ Too powerful for any logical system to capture entirely

◮ Essentially, because arithmetic is powerful enough to diagonalise
◮ to pull Cantor’s trick on the logical system

◮ Note though that we come to this realisation through the careful

manipulations of a logical system!

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 4 / 30

Outline

1 Introduction

2 Representability in Q

3 Undecidability, Indefinability and Incompleteness

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 5 / 30

Function Representability
If our logic is to have any oomph at all, it needs to be able to reason

about functions other than addition and multiplication.

Say that a function f : Nn
→ N is representable in theory T if there is a

formula A(x1, . . . , xn, xn+1) such that

◮ if f (x1, . . . , xn) = y, then

⊢T ∀xn+1. A(x1, . . . , xn, xn+1) ⇐⇒ (xn+1 = y)

where xi, y are translations of the numbers xi and y into terms of
the logic.

◮ E.g., in Q, 3 = s(s(s(0)))

For example, the function f=(x, y) that returns 1 if x = y and 0 otherwise

is representable in Q by

(x = y ∧ r = s(0)) ∨ (x 6= y ∧ r = 0)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 6 / 30

Recursive Functions are Representable in Q

We will show that all recursive (computable) functions are

representable in Q. (No mean feat!)

Base Cases:

◮ zero function (input x): (y = 0)

◮ successor function (input x): (y = s(x))

◮ projection pi,n: (y = xi)

Remember it’s necessary to show equivalence is derivable

in Q (which is weak).

What’s trivial in all arithmetic may not be so easy in Q.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 7 / 30

Composition is Representable in Q

Want to represent: Cn[f , g1, . . . , gn]

Assume f , gi are representable by F(x1, . . . , xn, x) and Gi(z1, . . . , zm, y)

respectively.

Representation of composition is a formula with z1 to zm (inputs) and x

(output) free.

∃y1 . . . yn.

G1(z1, . . . , zm, y1)∧ · · ·∧ Gn(z1, . . . , zm, yn)∧ F(y1, . . . , yn, x)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 8 / 30

Minimisation is Representable in Q

Must first have notion of <.

Define x < y
def
= ∃z. s(z) + x = y

◮ Everywhere I write x < y, that is a short-hand for the RHS above;

I haven’t extended Q.

Assume f : Nn+1
→ N is representable by F.

Want to show Mn[f] : Nn
→ N is also representable.

With x1 . . . xn as inputs, and y as output:

use F(y, x1, . . . , xn, 0)∧ (∀i. i < y ⇒ ¬F(i, x1, . . . , xn, 0))

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 9 / 30

Representability of Primitive Recursion

Complicated!

We want to emulate Pr[f , g] (base-case f , recursive-case g)

Such that

Pr[f , g](x1, . . . , xn, 0) = f (x1, . . . , xn)

Pr[f , g](x1, . . . , xn,m + 1) = g(x1, . . . , xn,m,Pr[f , g](x1, . . . , xn,m))

Basic idea is to construct a list of all the answers to the recursive calls

(up to some limit k).

◮ Recall argument about TM emulation of primitive recursion

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 10 / 30

Representability of Primitive Recursion

Constructing a list of answers. . .

Write R(x1, . . . , xn, k, ℓ) as abbreviation for

index(ℓ, 0) = f (x1, . . . , xn) ∧

∀j < k. index(ℓ, s(j)) = g(x1, . . . , xn, j, index(ℓ, j))

Read R(~x, k, ℓ) as “ℓ represents the values of Pr[f , g] up to k”

Can assume that f and g are representable.

◮ Will need to demonstrate that we can encode lists,

◮ and the index function

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 11 / 30

Give Me Your Huddled Answers Up to k

With R to hand, can represent

d(x1, . . . , xn, k) = µ ℓ. R(x1, . . . , xn, k, ℓ)

(using µ x . . . for “least x” operator)

The d function is representable if index, f and g are.

Then Pr[f , g] = Cn[index, d, pn+1,n+1], and so representable.

Pr[f , g](x1, . . . , xn, k) = Cn[index, d, pn+1,n+1](x1, . . . , xn, k)

= index(d(x1, . . . , xn, k), pn+1,n+1(x1, . . . , xn, k))

= index(d(x1, . . . , xn, k), k)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 12 / 30

Encoding Lists and the Indexing Operation

Approach from B&J (there are surely others).

To represent e1, . . . , ek

1 Pick a prime p such that p − 1 > k and p − 1 > ei for all i

2 Let s = p − 1

3 For element ei use “cell”: s i ei (digits concatenated together).

4 For whole list, concatenate all cells in order

5 Treat digit sequence as number to base p

6 Pair resulting number with p

For example, represent [2, 1, 3, 4] with p = 7 as

〈7, 6026116236347〉 (= 〈7, 1198030466210 〉)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 13 / 30

Lists, Digit Sequence Concatenation, Primes, Oh My!

Just a sample of some of the technology required:

Concatenation:

Write a ∗p b to mean a concatenated with b (using base p).

Definition: a ∗p b = a · η(p, b) + b

The η function calculates how far left a number needs to be shifted to

make room for b:

η(p, b) = µ i. (p is prime ∧ i is a power of p ∧ i > b ∧ i > 1) ∨

(p is not prime ∧ i = 0)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 14 / 30

Representability in Summary

All computable functions can be represented in first order logics with

nothing more than addition and multiplication.

We earlier saw that FOL could capture whether or not Turing Machines

would halt.

Quantifiers buy you a lot!

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 15 / 30

Outline

1 Introduction

2 Representability in Q

3 Undecidability, Indefinability and Incompleteness

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 16 / 30

Getting Ready to Diagonalise

Assume we have a Gödel-numbering function gn : formula → N.

Remember we also have a representation for individual N inside the

logic.

◮ 3 = s(s(s(0)))

◮ Generally, n = sn(0)

This is a function from N to terms (call it nt).

Compose the two (nt ◦ gn), and we get a function from formulas

to terms, mapping A to pAq.

◮ pAq is the “Quine-quote” of A

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 17 / 30

Diagonalising a Formula

Call

∃x. (x = pAq) ∧ A

the diagonalisation of A.

Note: if x is free in A, then the diagonalisation of A is a formula that

says

A is true of “itself”.

or, more accurately,

A is true of its own Gödel-number.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 18 / 30

Computable Diagonalisation

Given n = gn(A), it is easy to compute gn(diagonalisation of A).

◮ Recall diagonalisation of A is ∃x. (x = pAq) ∧ A

A definition:

diag(n) = mk exists(Vx,mk conj(mk eq(Vx, gn(nt(n))), n))

where Vx = mk var("x"), and

where the mk functions compute Gödel-numbers

of the right form, given Gödel-numbers as inputs.

Properties:

diag(gn(A)) = gn(∃x. x = pAq ∧ A)

gn−1(diag(n)) = ∃x. x = nt(n) ∧ gn−1(n)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 19 / 30

The Diagonal Lemma

Let T be a theory in which diag is representable. Then for any formula

B(y) (of the language of T, containing just the variable y free), there is a

sentence G such that

⊢T G ⇐⇒ B(pGq)

Let A be the predicate that represents diag. Then, for all n

⊢T ∀y. A(nt(n), y) ⇐⇒ y = nt(diag(n))

Let F be ∃y. A(x, y) ∧ B(y), and G the diagonalisation of F.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 20 / 30

Proving the Diagonal Lemma

A represents diag: for all n, ⊢T ∀y. A(nt(n), y) ⇐⇒ y = nt(diag(n))

F = ∃y. A(x, y) ∧ B(y), G is diagonalisation of F.

G = ∃x. (x = pFq) ∧ F

⇐⇒ ∃y. A(pFq, y)∧ B(y)

= ∃y. A(nt(gn(F)), y) ∧ B(y)

⇐⇒ ∃y. (y = nt(diag(gn(F)))) ∧ B(y)

= ∃y. (y = nt(gn(G)))∧ B(y)

⇐⇒ B(pGq)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 21 / 30

More Vocabulary—Theories

A theory is a set of theorems.

T2 is an extension of T1 if T1 ⊆ T2.

A theory T is

Consistent if it does not contain both A and ¬A for any A.

Complete if, for all A, it contains either A or ¬A.

Decidable if there is a computable function that correctly

characterises Gödel-numbers of theorems.

Axiomatisable if there is a decidable subset of T whose logical

consequences are all of T .

Note: “Complete” is overloaded; inference systems can be complete

too.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 22 / 30

More Vocabulary—Definability

A set of natural numbers S is definable in T if there is a formula B(n)

such that

n ∈ S iff ⊢T B(n)

n /∈ S iff ⊢T ¬B(n)

Recursive/decidable sets are definable in extensions of Q.

Analogously, can talk of n-place relations being definable.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 23 / 30

Indefinability Lemma 1

If T is a consistent extension of Q, then the set of Gödel-numbers of

theorems of T is not definable.

By contradiction.

◮ Let Thm be the formula capturing theorem-hood.
◮ So, ⊢T Thm(nt(n)) iff ⊢T gn−1(n) (1)

and ⊢T ¬Thm(nt(n)) iff 6⊢T gn−1(n) (2)

◮ The function diag is representable in T .

◮ So, there is a G, such that ⊢T G ⇐⇒ ¬Thm(pGq) (†)

◮ Is G a theorem of T ?
◮ Yes. Then ⊢T Thm(pGq) by (1). But then, by (†) ⊢T ¬G also!

(T inconsistent, a contradiction)

◮ No. Then ⊢T ¬Thm(pGq) by (2). So, by (†), ⊢T G.

(G a theorem after all, contradiction)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 24 / 30

Undecidability of Arithmetic

Arithmetic is the set of true statements about N.

◮ Thus, a consistent extension of Q.

If arithmetic were decidable, it would be definable.

But we know that theorem-hood is not definable in consistent

extensions of Q.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 25 / 30

Tarski’s Indefinability Theorem

Alfred Tarski

(1901–1983)

The set of Gödel-numbers of sentences true in

arithmetic is not definable in arithmetic.

Immediate from Indefinability Lemma 1 as arithmetic

is a consistent extension of Q.

When Gödel and Tarski were both living in the USA (at Princeton and

Berkeley respectively), Tarski is said to have described himself as

the greatest sane logician in the USA.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 26 / 30

An Axiomatisable, Complete Theory is Decidable

Uses fact that inference system for FOL is complete.

Assume that S is the decidable set of axioms.

Algorithm to decide if A is a theorem:

1 Enumerate all theorems.

2 Eventually, one of S0 ⇒ A or S0 ⇒ ¬A will appear (by
completeness)

◮ S0 is a finite conjunction of elements of S

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 27 / 30

Gödel’s First Incompleteness Theorem

Kurt Gödel

(1906–1978)

There is no consistent, complete, axiomatisable

extension of Q.

Corollary: arithmetic is not axiomatisable.

◮ You can pick any two of consistent, complete

and axiomatisable.

◮ And we assume that the Platonic theory of

arithmetic is the first two.

Gödel starved himself to death in the belief that he was being

poisoned.

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 28 / 30

Why Gödel’s Incompleteness Theorem?

There is no consistent, complete, axiomatisable

extension of Q.

A formal system (axioms + rules of inference) is axiomatisable as long

as the axioms are decidable.

So, when we apply to Gödel’s First Incompleteness Theorem to formal

systems

◮ (that include a modest amount of arithmetic)

It tells us that if it is consistent, it must be incomplete.

Or, if it is complete, it is inconsistent (= useless).

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 29 / 30

Summary

Representability

◮ All recursive functions are representable in extensions of Q

Arithmetic Cannot be Captured

◮ The diagonalisation function is computable

◮ So any candidate “theorem-hood” notion can be turned against
itself

◮ “I am true iff I am not a theorem”

◮ Truth is not definable in arithmetic (Tarski)

◮ Arithmetic is not axiomatisable (Gödel)

Michael Norrish (Data61) 4. Gödel I, Tarski Truth 30 / 30

	Introduction
	Representability in Q
	Undecidability, Indefinability and Incompleteness

