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Last Time. . .

Representability

◮ All recursive functions are representable in extensions of Q

Arithmetic Cannot be Captured

◮ The diagonalisation function is computable

◮ So any candidate “theorem-hood” notion can be turned against
itself

◮ “I am true iff I am not a theorem”

◮ Truth is not definable in arithmetic (Tarski)

◮ Arithmetic is not axiomatisable (Gödel)
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Peano Arithmetic

Called, variously: PA (Johnstone), Z (B&J), S (Mendelson).

Take Q, and add induction:

◮ If P is a formula with x free, then the universal closure of

P(0)∧ (∀m. P(m) ⇒ P(s(m))) ⇒ (∀n. P(n))

is an axiom.

(Where P(a) means P with x replaced by a.)

The result is a formal system with an infinite number of axioms.

◮ However, the axioms are still decidable.
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3 Gödel’s Second Incompleteness Theorem

4 (Non-)Implications

Michael Norrish (Data61) 5. Gödel II 5 / 32



Proofs are Computably Checkable

A proof in a formal system is a sequence of formulas such that

every formula in the sequence is

◮ an instance of an axiom; or

◮ is the result of applying a rule of inference to one or more formulas

earlier in the sequence

For human consumption, we usually indicate a non-axiom’s forebears

explicitly.

But we could just check all possible earlier formulas.
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Proofs are Arithmetisable

Already know how to map

◮ formulas into numbers

◮ lists of numbers into numbers.

Can therefore turn a proof into a number.

Checking this number is really a proof is computable, hence

representable in extensions of Q.

Given formula A, can also check that the last formula in a proof is

equal to A.

Thus

Proof (p, pAq) = p is a proof of A

is definable.
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A Provability Predicate

Let Provable(n)
def
= (∃p. Proof (p, n))

Write �A for Provable(pAq).

Important Properties of Provability:

◮ if ⊢ A then ⊢ �A

◮ ⊢ �(A ⇒ B) ⇒ (�A ⇒ �B)

◮ ⊢ �A ⇒ �(�A)

In Z the above can all be proved; as can

◮ if ⊢Z �A then ⊢Z A
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Provability Does Not Define Theorem-Hood

Last time, we proved the indefinability of theorem-hood.

Definability required

⊢T Thm(nt(n)) iff ⊢T gn−1(n) (1)

⊢T ¬Thm(nt(n)) iff 6⊢T gn−1(n) (2)

Provability (�) only gives us (1).

So what happens if we replay the proof of indefinability with �?
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The Gödel Sentence

We have a G such that ⊢Z G ⇐⇒ ¬�G (1)

◮ This is the Gödel sentence for our theory.

We also know that ⊢Z G iff ⊢Z �G (2)

If Z is consistent, then:

G is not a theorem of Z.

◮ If it were, then ⊢Z G. So, ⊢Z �G by (2). But also, ⊢Z ¬�G by (1),

making Z inconsistent.

¬G is not a theorem of Z.

◮ If it were, then ⊢Z �G by (1). Then ⊢Z G by (2).

Again making Z inconsistent.
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Gödel’s First Incompleteness Theorem Concretely

As long as our logic T is strong enough to give us

⊢T G iff ⊢T �G

we know

If T is consistent, then 6⊢T G and 6⊢T ¬G

In other words, G demonstrates T ’s incompleteness.

Moreover, we do know that ⊢T G ⇐⇒ ¬�G

◮ This says that G is true iff G is not provable.

◮ Having just proved G’s unprovability, we can conclude G is true.
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Henkin’s Formula

On one hand, G says that G isn’t derivable.

Diagonalisation also gives us H such that

⊢T H ⇐⇒ �H

or

H says that H is derivable

But is H true?
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Löb’s Theorem

By far the weirdest result of the course:

If ⊢T �A ⇒ A, then ⊢T A

Can also write:

�(�A ⇒ A) ⇒ �A

which is the the axiom for modal provability logic.

(Why does provability “correspond” to a binary relation that is transitive

and well-founded?)
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Proof of Löb’s Theorem

Theorem: if ⊢T �A ⇒ A, then ⊢T A

Diagonalise formula �x ⇒ A, giving L such that

1 ⊢T L ⇐⇒ (�L ⇒ A)

2 ⊢T L ⇒ (�L ⇒ A) (bicond elimination)

3 ⊢T �(L ⇒ (�L ⇒ A)) (PP1)

4 ⊢T �L ⇒ �(�L ⇒ A) (PP2)

5 ⊢T �L ⇒ (��L ⇒ �A) (PP2 on right)

6 ⊢T �L ⇒ �A (PP3 eliminates ��L)

7 ⊢T �L ⇒ A (�A ⇒ A by assumption)

8 ⊢T L (7,1)

9 ⊢T �L (PP1)

10 ⊢T A (7,9)
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Löb’s Theorem Proves the Henkin Sentence

Henkin sentence is ⊢T H ⇐⇒ �H

If that’s provable, so too is ⊢T �H ⇒ H.

By Löb’s Theorem: ⊢T H

So the sentence that “says of itself that it is provable”, is indeed true.
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Provability Gives us Arithmetisation of Consistency

Write ⊥ for 0 6= 0. (Recall that ⊢ ⊥ ⇒ A for any A.)

Write ConT for ¬�⊥ (“false” is not provable).

◮ Consistency was “actually” simultaneous derivation of A and ¬A

for some A

◮ But the two are equivalent.
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Consistency is Unprovable (Sketchy Version)

Want to show

⊢T ConT ⇒ G

Then, ConT can’t be derivable, because if it were, G would be too.

We know that G “means” ‘G is not derivable’.

Gödel’s First Incompleteness Theorem says

If T is consistent, then G is not derivable.

But that’s just what we want to prove!

◮ Just have to be able to carry out proof of Gödel’s First

Incompleteness Theorem in T Done
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Consistency is Unprovable (Löb Version)

Suppose we did have ⊢T ConT , or ⊢T ¬�⊥.

Then get: ⊢T �⊥ ⇒ ⊥

◮ by propositional principle of proving anything from a false

assumption

Löb’s Theorem then says ⊢T ⊥ (false is derivable after all!)

A contradiction, so consistency is not provable. Done
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Consistency is Unprovable (non-Löb PP Version)

Recall that G demonstrates T ’s incompleteness (is unprovable).

Now want to argue that if T extends Z, then

⊢T ConT ⇒ G

(if ConT were provable, G would be too).

◮ Have (provability property): ⊢T �G ⇒ ��G

◮ Thus (diagonal property of G): ⊢T �G ⇒ �¬G

◮ “if I can prove G, then I can also prove ¬G”

◮ So, ⊢T �G ⇒ �⊥

◮ Diagonal property of G: ⊢T ¬G ⇒ �⊥

◮ Contrapositively: ⊢T ¬�⊥ ⇒ G Done
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Gödel’s Second Incompleteness Theorem

If T is at least as powerful as Z, then it cannot simultaneously:

◮ Be consistent

◮ Prove its own consistency
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Outline

1 Introduction

2 Provability Predicates
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Would a Consistency Proof of T in T Be Convincing?

Imagine we are doubtful about T .

A consistency proof would be reassuring.

But if that proof is carried out in T too,

how does that assuage our doubts?

◮ If it could be done in a small part of T , maybe. . .
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Consistency is Possible by Other Means

Peano Arithmetic was proved consistent by Gentzen.

(Q’s consistency follows too.)

He didn’t do it in PA, but used a different logical system.

Nor was his system stronger than PA; just different.
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Yikes, An Infinite Regress Awaits!

If we can’t prove our interesting systems consistent except by recourse

to other systems, this is a neverending process!
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Yikes, An Infinite Regress Awaits!

If we can’t prove our interesting systems consistent except by recourse

to other systems, this is a neverending process!

So what?

◮ We have the same problem whenever we set up our logical

systems; we have to start with some set of axioms.

◮ “We don’t need Gödel to tell us that we cannot accept a proof in

one formal system only on the basis of proof in another formal

system.”—Franzén
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Note

Consistent systems don’t have to prove true theorems.
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My Own Self-Doubt-Casting Sentence

If anyone says

“X because of Gödel’s Theorem”

or

“Thanks to Gödel’s Theorem, X”

or variants of the same. . .

. . . they’re talking nonsense.
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My Own Self-Doubt-Casting Sentence

If anyone says

“X because of Gödel’s Theorem”

or

“Thanks to Gödel’s Theorem, X”

or variants of the same. . .

. . . they’re talking nonsense. (To a first approximation.)
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Examples from Franzén

◮ Religious people claim that all answers are to be found in the Bible or in

whatever text they use. That means the Bible is a complete system, so

Gödel seems to indicate it cannot be true. And the same may be said of
any religion which claims, as they all do, a final set of answers.

◮ As Gödel demonstrated, all consistent formal systems are incomplete,
and all complete formal systems are inconsistent. The U.S. Constitution

is a formal system, after a fashion. The Founders made the choice of

incompleteness over inconsistency, and the Judicial Branch exists to
close that gap of incompleteness.

◮ Gödel demonstrated that any axiomatic system must be either
incomplete or inconsistent, and inasmuch as Ayn Rand’s philosophy of

Objectivism claims to be a system of axioms and propositions, one of

these two conditions must apply.

◮ Nonstandard models and Gödel’s incompleteness theorem point the way

to God’s freedom to change both the structure of knowing and the
objects known.
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Mathematics Floundering in a Relativistic Sea?

We can extend T by adding either G or ¬G as a new axiom.

The resulting theory will be consistent if T was.

◮ How do we pick which one to take?

For Z (PA), we know that G ⇐⇒ ConZ .

◮ We also know ConZ (Gentzen), so we should pick Z + G.

For more complicated systems (e.g., ZFC set theory),

“ordinary mathematics” does not necessarily know their consistency.

◮ but systems ZFC + ¬ConZFC are uninteresting
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Gödel and AI

Lucas:

However complicated a machine we construct, it will, if it is a
machine, correspond to a formal system, which in turn will be liable

to the Gödel procedure for finding a formula unprovable in that
system. This formula the machine will be unable to produce as true,

although a mind can see that it is true.

False.

◮ The Gödel formula is equivalent to the consistency of the system;

it is not true in general.

◮ The “human mind” is not known to have any special ability to

determine the consistency of arbitrary formal systems.

Also, see Franzén for more on Penrose’s various arguments.
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Summary

Provability Predicates

◮ Logical theories as strong as Z can capture the notion of

provability.

◮ Modal axioms must characterise the putative modality (�)

◮ Löb: if ⊢T �A ⇒ A, then ⊢T A

Gödel’s Second Incompleteness Theorem

◮ A system as strong as Z cannot both be consistent and prove its

own consistency.

Be Careful Out There
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Course Summary

Computability

◮ Turing Machines and Recursive Functions are equivalent.
◮ No extant computational model is more powerful

◮ Uncomputable problems exist (Halting Problem, notably)

Logic and Incompleteness

◮ Validity in FOL is undecidable (by reduction to Halting Problem)

◮ Logics with minimal arithmetic can represent computable

functions.

◮ By diagonalisation of formulas (a computable procedure):
◮ arithmetic truth is undecidable;
◮ no theory can be all three of consistent, complete, axiomatisable

◮ No theory extending Z can prove its own consistency
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