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Gödel’s Theorem Without Tears?

Get to the heart of computational incompleteness proofs
without having to fuss about what a computable function is!
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Gödel’s Theorem Without Tears!

https://www.ps.uni-saarland.de/extras/incompleteness/
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Course Structure

I’ll walk you through the paper contents, explaining underlying concepts:

1 Basic Synthetic Computability Theory

2 Weak Gödel à la Turing

3 More Basic Synthetic Computability Theory

4 Strong Gödel à la Kleene

5 Instantiation to FOL

D. Kirst Gödel’s Theorem Without Tears ANU Logic Summer School 2023 4



Course Topics

We’ll touch a lot of areas, slow me down any time!

Computability Theory
I Decidability, semi-decidability, recursive inseparability...

Metalogic
I First-order logic, soundness/consistency, incompleteness...

Constructive Mathematics
I Non-constructive axioms, anti-classical axioms, synthetic computability...

Computer Mechanisation
I Coq proof assistant, dependent type theory...
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The First Incompleteness Theorem

Which formal systems S admit sentences ϕ with both S 6` ϕ and S 6` ¬ϕ?

Gödel: all sound, sufficiently expressive ones (Gödel, 1931)

Rosser: all consistent, sufficiently expressive ones (Rosser, 1936)

Turing(/Post): Gödel’s incompleteness follows from undecidability

Kleene: Rosser’s incompleteness follows from recursive inseparability (Kleene, 1951)
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Motivational Testimonies
Computational proofs of Rosser’s strength are not well-known but desirable:

“Recently I was struck to discover just such a proof laid out...”
Anatoly Vorobey on the FOM mailing list

“A few months ago, I found a short, simple, Turing-machine-based proof of Rosser’s
Theorem... So, will Gödel’s Theorem always and forevermore be taught as a centerpiece of
computability theory, and will the Gödel numbers get their much-deserved retirement?”
Scott Aaronson on his blog

“Here I shall present very simple computability-based proofs of Gödel/Rosser’s
incompleteness theorem, which require only basic knowledge about programs. I feel that
these proofs are little known despite giving a very general form of the incompleteness
theorems, and also easy to make rigorous without even depending on much background
knowledge in logic.”
User21820 on StackExchange
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Motivational Testimonies (ctd.)

https://en.wikipedia.org/wiki/Halting_problem
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The Matrix of Incompleteness Statements

Unexpected decidability Disprove completeness Independent sentence

Soundness (Tue) Turing (Wed) Gödel (Thu)

ω-consistency Gödel

Consistency Rosser/Kleene (Fri)

The proofs given in this course will be:
Based on computability theory
In an abstract and synthetic setting
Mechanised in Coq (runs in browser!)
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Part 1
Basic Synthetic Computability Theory
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There are non-computable functions!?

Standard example: the characteristic function of the halting problem

χK (M) :=

{
1 if M terminates
0 if M diverges

Three properties ensure that this relation is a function:
Functionality: obvious
Totality: given M, since M either terminates or diverges by the law of excluded middle,
we have either χK (M) = 1 or χK (M) = 0, respectively
Unique choice: total functional relations are actually functions

So classical logic is needed to show that χK (M) really is a function!
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Pros and Cons of the Excluded Middle

Classical reasoning strengthens logical system:
Enables proofs by contradiction, classical case analysis, contraposition
Constructive proofs, if possible, can be considerably more complicated
Embraces Platonic perspective on mathematics

Constructive logic unveils constructive content:
Every definable function is computable
Every proof of existential (disjunctive) statements contains witness (decision)
Admits a more agnostic perspective on mathematics
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Some Synthetic Definitions

P ⊆ N is decidable if there exists d : N→ B with x ∈ P ↔ d x = tt

P ⊆ N is semi-decidable if there exists s : N× N→ B with x ∈ P ↔ ∃n. s (x , n) = tt

P ⊆ N is enumerable if there exists e : N→ N ∪ {∗} with x ∈ P ↔ ∃n. e n = x

P ⊆ N reduces to Q ⊆ N if there exists r : N→ N with x ∈ P ↔ r x ∈ Q
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Some Synthetic Properties

1 Decidable sets are semi-decidable and co-semi-decidable
⇒ Given d : N→ B pick s(x , n) := d x or s(x , n) := ¬Bd x , respectively

2 A set is semi-decidable if and only if it is enumerable
⇒ Given a semi-decider s : N× N→ B pick the enumerator

e n :=

{
n2 n = 〈n1, n2〉 and s(n1, n2) = tt
∗ otherwise

and given an enumerator e : N→ N ∪ {∗} pick the semi-decider s(x , n) := e n
?
= x

3 If X reduces to Y and Y is decidable, then so is X
⇒ Given d : N→ B and f : N→ N pick d ◦ f
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Generalised Synthetic Definitions

Synthetic definitions immediately transport to arbitrary sets:

P ⊆ X is decidable if there exists d : X → B with x ∈ P ↔ d x = tt

P ⊆ X is semi-decidable if there exists s : X × N→ B with x ∈ P ↔ ∃n. s (x , n) = tt

P ⊆ X is enumerable if there exists e : N→ X ∪̇ {∗} with x ∈ P ↔ ∃n. e n = x

P ⊆ X reduces to Q ⊆ Y if there exists r : X → Y with x ∈ P ↔ r x ∈ Q
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Post’s Theorem and Markov’s Principle

If P is semi-decidable and co-semi-decidable, it should be decidable!

Idea: run both semi-deciders in parallel, pick the one terminating
Problem: we only know that this procedure will not diverge but need actual termination
Solution: assume Markov’s Principle, a very restricted form of double-negation elimination

∀f : N→ B.¬¬(∃n. f n = tt)→ ∃n. f n = tt

Theorem
Assuming Markov’s Principle, if P is semi-decidable and co-semi-decidable, then it is decidable.
In fact, the converse also holds, so the assumption of Markov’s Principle is necessary.
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Post’s Theorem and Markov’s Principle (Proof)

Theorem
Assuming Markov’s Principle, if P is semi-decidable and co-semi-decidable, then it is decidable.
In fact, the converse also holds (for non-empty P), so Markov’s Principle is necessary.

Proof.
Given s1 semi-deciding P and s2 semi-deciding P , we can show:

∀x .∃n. s1 (x , n) ∨B s2 (x , n) = tt (∗)

1 To show (∗), assume x and apply Markov’s Principle, so it suffices to assume
¬(∃n. s1 (x , n) ∨B s2 (x , n) = tt) for a contradiction. Since ¬¬(x ∈ P ∨ x 6∈ P) is provable,
we can assume x ∈ P ∨ x 6∈ P which is enough to derive ∃n. s1 (x , n) ∨B s2 (x , n) = tt.

2 Since (∗) induces a function f : X → N, we can construct d x := s1 (x , f x).
For the converse, given ¬¬(∃n. f n = tt) consider the set P := {x ∈ N | ∃n. f n = tt}.
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Alternative Version of Post’s Theorem
If we are in a setting that distinguishes computational versions of ∨ and ∃ from their truncated
counterparts || ∨ || and ||∃|| with expectable properties, we can alternatively show:

Theorem
If P is bi-semi-decidable and satisfies ∀x . ||x ∈ P ∨ x 6∈ P||, then it is decidable.

Proof.
Given s1 semi-deciding P and s2 semi-deciding P , we can show:

∀x .∃n. s1 (x , n) ∨B s2 (x , n) = tt (∗)

1 To show (∗), assume x and apply linear search, so it suffices to show the truncated
||∃n. s1 (x , n)∨B s2 (x , n) = tt||. This then follows by case distinction on ||x ∈ P ∨ x 6∈ P||.

2 Since (∗) induces a function f : X → N, we can construct d x := s1 (x , f x).
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Part 2
Weak Gödel à la Turing
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Abstract Formal Systems

Definition
A triple S = (S,¬,`) is called a formal system if:

S is a set, considered the sentences of S
¬ : S→ S is a function on sentences, considered the negation operation
` ⊆ S is a semi-decidable set of sentences, considered the provable sentences
Consistency holds in the form that for all ϕ : S not both ` ϕ and ` ¬ϕ

We call S complete if ` ¬ϕ whenever 6` ϕ for all ϕ : S.

Instances:
First-order axiomatisations like Q, PA, HA, ZF, IZF, . . .
Second-order arithmetics and set theories
Simple and dependent type theories
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Properties of Abstract Formal Systems

The following hold for any formal system S = (S,¬,`):

1 The set {ϕ ∈ S | ` ¬ϕ} of refutable sentences is semi-decidable
⇒ Given s : S× N→ B semi-deciding the provable sentences, the function
s ′ (ϕ, n) := s (¬ϕ, n) semi-decides the refutable sentences

2 Completeness implies that the unprovable and refutable sentences coincide
⇒ Immediate, using consistency to show that refutable sentences are unprovable

3 Assuming Markov’s Principle, completeness implies decidability of the provable sentences
⇒ Combining (1) and (2) we obtain that the set of unprovable sentences is
semi-decidable, then Post’s theorem yields that the set of provable is decidable
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Weak Gödel à la Turing

We say that a formal system S represents a set P ⊆ X if P reduces to the provable sentences,
i.e. if there is a function r : X → S with

∀x . x ∈ P ↔ ` r x .

Theorem
Assuming Markov’s Principle, every set represented in a complete formal system is decidable.
Put differently, every formal system that represents an undecidable set must be incomplete.

Unsatisfactory for at least (and a half) reasons:
No independent sentence (not even an actual contradiction)
Assumes Markov’s Principle
Representability is a soundness property
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Part 3
More Basic Synthetic Computability Theory
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Church’s Thesis

To introduce actual undecidability, we need to assume an axiom restricting
to the computational interpretation of functions!

Inconsistent attempt: assume a surjection N→ (N→ B) to diagonalise against...

Consistent assumption in many variants of constructive mathematics:

Kreisel (1970): “Every function can be captured by Kleene’s T-predicate”

Richman (1983): “The set of partial functions is countable”

Bauer (2006): “The set of enumerable sets is enumerable”

Swan and Uemura (2019): “Every function is computable by a Turing machine”

Forster (2021a): “The set of partial functions is enumerable”
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Partial Values

Definition
The set of partial values ∂X over a set X is defined by:

∂X := {ξ : N→ X ∪̇ {∗} | ∀nn′xx ′. ξ n = x ∧ ξ n′ = x ′ → x = x ′}

We write ξ ↓ x if ξ n = x for some n, ξ ↓ if ξ ↓ x for some x , and ξ ↑ if there is no such x .

If ξ ↓ x and ξ ↓ x ′ then x = x ′

There is a partial value ξ⊥ with ξ⊥ ↑

Given x ∈ X there is a partial value ξx with ξx ↓ x

Given ξ ∈ ∂X and f : X → ∂Y there is a partial value ξ >>= f with:

ξ >>= f ↓ y ↔ ∃x . ξ ↓ x ∧ f x ↓ y

D. Kirst Gödel’s Theorem Without Tears ANU Logic Summer School 2023 25



Partial Functions

We write X ⇀ Y for X → ∂Y :

1 Functions X → Y induce total partial functions X ⇀ Y
⇒ Given f : X → Y pick g x := ξfy

2 Total partial functions X ⇀ Y induce functions X → Y
⇒ A proof of ∀x .∃y . f x ↓ y is a function X → Y

3 Sets P ⊆ X are semi-decidable iff they are the domain of a partial function
⇒ Given s : X × N→ B pick f : X ⇀ {†} defined by f x n = † iff s (x , n) = tt.

4 Sets P ⊆ X are enumerable iff they are the range of a partial function
⇒ Given e : N→ X ∪̇ {∗} pick f : N⇀ X defined by f x n := e n.
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EPF and the Halting Problem

Axiom (EPF)

There is a universal function Θ : N→ (N⇀ B) enumerating all partial functions:

∀f : N⇀ B.∃c : N. ∀xb.Θc x ↓ b ↔ f x ↓ b

Lemma
The self-halting problem K := {c ∈ N | Θc c ↓} is semi-decidable but undecidable.

Proof.
Assume d : S→ B decides K. Consider the function f : N⇀ B with f c ↑ if d c = tt and
f c ↓ tt otherwise. Let c be the code of f given by EPF, we derive a contradiction:

d c = tt ⇔ c ∈ K ⇔ Θc c ↓ ⇔ f c ↓ ⇔ f c ↓ tt ⇔ d c = ff
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Stronger Gödel à la Turing

Since we now have an undecidable set, we immediately obtain:

Theorem
Assuming Markov’s Principle, every formal system representing K must be incomplete.

Still unsatisfactory for three reasons:
No independent sentence
Assumes Markov’s Principle
Representability is a soundness property
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Halting Problem (Refined)
Lemma
For every partial decider d : N⇀ B for K = {c ∈ N | Θc c ↓} with

∀x . x ∈ K ↔ d x ↓ tt

one can construct a concrete value c such that d c diverges.

Proof.
We first define a partial function f : N⇀ B diagonalising against d by:

f x :=

{
ξtt if d x ↓ ff
ξ⊥ otherwise

Now using EPF we obtain a code c for f and deduce that d c ↑ by:

d c ↓ tt ⇔ c ∈ K ⇔ Θc c ↓ ⇔ f c ↓ ⇔ f c ↓ tt ⇔ d c ↓ ff
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Post’s Theorem (Refined)

Theorem
Given disjoint semi-decidable sets P,Q ⊆ X , there is a partial decider d : X ⇀ B with:

∀x . (x ∈ P ↔ d x ↓ tt) ∧ (x ∈ Q ↔ d x ↓ ff)

Proof.
Given s1 semi-deciding P and s2 semi-deciding Q, define d by:

d x n :=


tt if s1 x n
ff if s2 x n
∗ otherwise

Then use disjointness to verify well-definedness and specification.
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Partial Deciders of Formal Systems

Since formal systems have two canonical semi-decidable sets:

Lemma
For every formal system S = (S,¬,`) there is a partial function dS : S⇀ B with:

∀ϕ. (` ϕ↔ dS ϕ ↓ tt) ∧ (` ¬ϕ↔ dS ϕ ↓ ff)

Moreover, because of consistency we have dS ϕ ↑ exactly if ϕ is an independent sentence.

If S is complete, then dS induces a decider for representable problems

Even without completeness, dS is a partial decider for representable problems...
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Strongest Gödel à la Turing

Theorem
Every formal system representing K has an independent sentence.

Proof.
If r : N→ S represents K, then dS ◦ r is a candidate decider for K. Thus there is some code c
with dS (r c) ↑, so r c is must be independent.

Explicit independent sentence!

No need to assume Markov’s Principle!

Still only applies to sound systems due to representability property...
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Part 4
Strong Gödel à la Kleene
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Recursive Inseparability

To avoid soundness, we would like that c ∈ K implies ` ¬r c ...

K is not semi-decidable, so can’t be recognised in a formal system

So we would like a semi-decidable subset of K

Doesn’t work for K directly but there are other examples

Recursive Inseparability: disjoint sets P,Q that are not separable by d : X → B

∀x . (P x → d x = tt) ∧ (P x → d x = ff)
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Canonical Inseparable Sets
Lemma
The sets K1 := {c ∈ N | Θc c ↓ tt} and K0 := {c ∈ N | Θc c ↓ ff} are semi-decidable but
recursively inseparable, in fact for every partial separation d : N⇀ B with

K1 x → d x ↓ tt and K0 x → d x ↓ ff

one can construct a concrete value c such that d c diverges.

Proof.
We first define a partial function f : N⇀ B diagonalising against s by:

f x :=


ξtt if d x ↓ ff
ξff if d x ↓ tt
ξ⊥ otherwise

Now using EPF we obtain a code c for f and deduce that d c ↑ by similar equivalences.
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Strong Gödel à la Kleene

We say that a formal system S separates sets P,Q ⊆ X if there is a function r : X → S with

∀x . (x ∈ P → ` r x) ∧ (x ∈ Q → ` ¬r x).

Theorem
Every formal system separating K1 and K0 has an independent sentence.

Proof.
If r : N→ S separates K1 and K0, then dS ◦ r is a partial separation of K1 and K0. Thus there
is some code c with dS (r c) ↑, so r c is must be independent.

Corollary

If S separates K1 and K0, then every extension S ′ ⊇ S has an independent sentence.
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Part 5
Instantiation to FOL

D. Kirst Gödel’s Theorem Without Tears ANU Logic Summer School 2023 37



Essential Incompleteness of Robinson’s Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ)

For every f : N⇀ B there is a Σ1-formula ϕ with: f x ↓ b ↔ Q ` ∀b′. ϕ(x , b′)↔ b′ = b

CTQ implies that Q and every consistent extension of it has an independent sentence:

CTQ implies EPF

CTQ implies that Q separates the problems K1 and K0

Claim follows from the abstract incompleteness result
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Deriving CTQ from Church’s Thesis

CTQ is implied by a more conventional formulation of Church’s thesis:

Axiom (CT)

Every f : N⇀ B is computable by a µ-recursive function.

Instead of showing directly that Q represents µ-recursive functions,
we chained a few results that already had been mechanised in Coq:

1 Equivalence of several models of computability (Forster, 2021b)

2 DPRM theorem (Larchey-Wendling and Forster, 2019): computability is Diophantine

3 Diophantine constraints can be embedded into Q (Kirst and Hermes, 2021)

4 Use Rosser’s trick to obtain representability as in CTQ
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Conclusion
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Summary: 5 Shades of Gödel

1 Post’s Theorem: complete systems are decidable

2 Posts’s Theorem: systems representing undecidable problems are incomplete

3 Post’s Theorem + Halting Problem: systems representing K are incomplete

4 Refined Post’s Theorem + Halting Problem: systems representing K have gaps

5 Refined Post’s Theorem + Recursive Insep.: systems separating K1 and K0 have gaps

Easy computational arguments, elegant formalisation in constructive logic!
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Literature Pointers

Richman (1983): Church’s Thesis without Tears

Smith (2021): Gödel without (too many) Tears

Kirst and Peters (2023): Gödel’s Theorem without Tears

Bauer (2017): Five Stages of Accepting Constructive Mathematics

Bauer (2006): First Steps in Synthetic Computability Theory

Forster (2022): Parametric Church’s Thesis: Synthetic Computability without Choice

Kleene (1951): A Symmetric form of Gödel’s Theorem

Kleene (2002): Mathematical Logic

Beklemishev (2010): Gödel Incompleteness Theorems and the Limits of their Applicability
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Take-Home Messages

1 Even incompleteness of Rosser’s strength is nothing but basic computability theory!

2 Constructive logic is a great framework to explore computability theory!

3 With the right setup, deep theorems can be mechanised in 200 lines!

Thank You!!!
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