
Interactive Proof Systems

Thomas Haines

ANU Logic Summer School 2023

Contents

1 Background on Non-Interactive Proof Systems 2

1.1 P vs NP . 2

1.2 Introducing IP . 5

2 Interactive Proofs 8

2.1 How big is IP? . 8

2.1.1 IP for Graph Non-Isomorphism . 8

2.1.2 Polynomial Hierarchy . 9

2.1.3 IP for Graph Non-Isomorphism Resumed 10

2.1.4 An Upper Bound on IP . 11

3 Unsatisfiability and Counting Problems 14

3.1 Unsatisfiability . 14

3.2 P#P ⊆ IP . 18

3.3 IP = PSPACE . 19

4 Applications in Cryptography 20

4.1 Why I want to hide a witness . 20

4.2 Zero-knowledge proofs . 21

4.3 Digital Signatures . 23

4.4 Interaction is such a pain . 24

5 Probabilistically Checkable Proofs 25

5.1 Definition of PCP . 25

5.2 PCP Theorem . 27

6 Bonus: Average-Case Complexity 28

6.1 Average-case complexity . 28

6.2 Five worlds . 28

1

Chapter 1

Background on Non-Interactive

Proof Systems

As the title of this course suggests, we are going to be covering interactive proof systems and

specifically the complexity thereof; the suggested background reading was “Computational

Complexity - A Conceptual Perspective” by Oded Goldreich.

In the first lecture, or so, I’m going to start by covering some results from complexity

theory of non-interactive proof systems.

1.1 P vs NP
I assume that most of you have heard of the P vs NP problem.

Figure 1.1: By Behnam Esfahbod, CC BY-SA 3.0

2

CHAPTER 1. BACKGROUND ON NON-INTERACTIVE PROOF SYSTEMS 3

Definition 1.1.1: Search Problem

Let R ⊆ {0, 1}∗ ×{0, 1}∗ and R(x) := {y : (x, y) ∈ R} denote the set of solutions for

the instance x. An algorithm f : {0, 1}∗ → {0, 1}∗ ∪ {⊥} solves the search problem

of R if for every x the following holds: if R(x) ̸= ∅ then f(x) ∈ R(x) otherwise

f(x) =⊥.

Definition 1.1.2: Decision Problem

Let S ⊆ {0, 1}∗. An algorithm f : {0, 1}∗ → [0, 1] solves the decision problem of S if

for every x it holds that f(x) = 1 if and only if x ∈ S.

Definition 1.1.3: Polynomial Time Algorithm

Having fixed a computational model and a specific algorithm A, we can define tA :

{0, 1}∗ → N if for every x, A halts after exactly tA(x) steps. We can then define

TA : N → N by TA(n) := maxx∈{0,1}n{tA(x)}.
An algorithm is polynomial bounded, or equivalent polynomial-time, if there exists

a polynomial p such that for all n, TA(n) ≤ p(n).

Definition 1.1.4: P

• A decision problem S ⊆ {0, 1}∗ is efficiently solvable if there exists a polynomial

time algorithm A such that, for every x, it holds that A(x) = 1 if and only if

x ∈ S.

• We denote by P the class of decision problem that are efficiently solvable.

The consideration of polynomial bounded is grounded in the following considerations:

Theory: The set of polynomial algorithms is closed under addition, multiplication, and

functional composition. This ensures natural composition of algorithms preserves ef-

ficiency.

Practice: Past experience shows that every natural problem which can be solved in polyno-

mial time also has a ”reasonable efficient” algorithm.

.

CHAPTER 1. BACKGROUND ON NON-INTERACTIVE PROOF SYSTEMS 4

Definition 1.1.5: NP

A decision problem S ⊆ {0, 1}∗ has an efficiently verifiable proof system if there

exists a polynomial p and a polynomial-time algorithm V such that the following

two conditions hold:

1. Completeness: For ever x ∈ S, there exists y of length at most p(|x|) such that

V (x, y) = 1

2. Soundness: For every x /∈ S and every y, it holds that V (x, y) = 0

In such a case, we say that S had an NP-proof system, and refer to V as the

verification procedure (or as the proof system itself).

It’s clear that if you can solve the search problem then you solve the decision problem;

however under the assumption that P = NP the decision formulation of the problems in

NP is also equivalent to the search formalisation. I won’t give the full proof but basically

the decision problem of being a prefix of the witness being effectively solvable allows the

polynomial time reconstruction of the witness.

Definition 1.1.6: Reducibility

A problem Π is reducible to a problem Π′ if there exits a polynomial-time algorithm

A such that for every function f that solves Π′ it holds that Af solves Π.

Definition 1.1.7: NP-Hard

A S ⊆ {0, 1}∗ is NP-Hard if every set in NP is reducible to S.

Definition 1.1.8: NP-Complete

A S ⊆ {0, 1}∗ is NP-Complete if it is NP-Hard and in NP.

The existence of NP-Complete problems is itself amazing; the fact that many natural

problems are NP-Complete is astounding.

Claim: The 6 Million Dollar Problem

A practical algorithm for an NP-Complete problem would allow one not only to

claim the prize promised for PvsNP but the other five open problems as well since

the algorithm could find a proof these problems.

To prove P = NP it would suffice to show an efficient algorithm for any NP-Complete.

CHAPTER 1. BACKGROUND ON NON-INTERACTIVE PROOF SYSTEMS 5

Conjecture 1.1.9: Church-Turing Thesis

A function can be computed by some Turing machine if and only if it can be computed

by some machine of any other “reasonable and general” model of computation.

There are caveats between uniform models of computation and non-uniform which I will

not touch upon. Indeed, certain uncomputable (for uniform models) functions are computable

in non-uniform models.

Conjecture 1.1.10: Cobham-Edmonds Thesis

A problem has polynomial time complexity in some “reasonable and general” model

of computation if and only if it has polynomial time complexity in the model of

Turing machines.

Theorem 1.1.11: Scarcity of computable functions

The set of computable functions is countable, whereas the set of all functions (from

strings to string) has cardinality ℵ.

Proof for Theorem

Since each computable function is computable by a machine that has a finite description,

there is a 1-1 correspondence between computable function and set of strings and hence

the natural numbers. On the other hands, there is a 1-1 correspondce between the set of

Boolean functions and the set of real numbers in [0, 1). This correspondence associates

each real r ∈ [0, 1) to the function f : N → {0, 1} such that f(i) is the ith bit in the

infinite binary expansion of r. ■

1.2 Introducing IP

Interactive proofs relax the verifier in the following ways, the versifier may use randomness

and the verifier may interact with P.

CHAPTER 1. BACKGROUND ON NON-INTERACTIVE PROOF SYSTEMS 6

Figure 1.2: By Alessandro Chiesa

CHAPTER 1. BACKGROUND ON NON-INTERACTIVE PROOF SYSTEMS 7

Interaction
Y N

Y IP MA

R
a
n
d
o
m
n
es
s

N NP NP

Table 1.1: Overview of Interaction and Randomness

Definition 1.2.1: Interactive Proof System

An Interactive Proof System for S is a pair of interactive algorithms (P, V), where

P is unbounded and V is polynomial time, s.t.:

1. Completeness: For ever x ∈ S, Pr[< P (x), V (x; r) >= 1] = 1

2. Soundness: For every x /∈ S, for every P̃ , Pr[< P̃ , V (x; r) >= 1] ≤ 1
2

Any noticeable gap between the probability of completeness and soundness suffices

Definition 1.2.2: Merlin Arthur MA

Is exactly NP but allows the verifier to use random coins.

MA is equal to NP if Strong Pseudorandom Function exist

Confusingly AM is also a complexity class

Definition 1.2.3: IP

A decision problem S ⊆ {0, 1}∗ is in IP if it has an interactive proof system.

So Table 2.1 shows that both interaction and randomness are required to improve expres-

siveness.

Chapter 2

Interactive Proofs

Last lectrue we covered

• Definitions of decision and search problems

• Definitions of P and NP

• Definition of IP

2.1 How big is IP?

It is immediate that NP ⊆ IP since IP generalises NP
The question is do we gain any expressive power?

2.1.1 IP for Graph Non-Isomorphism

Definition 2.1.1: Graph Isomorphism

Let G0 = (V,E0) and G1 = (V,E1) be two graphs on vertices V .

G0 ≡ G1 if ∃ a permutation π : V → V s.t. (u, v) ∈ E0 ↔ (π(u), π(v)) ∈ E1.

We can then write G1 = π(G0)

Definition 2.1.2: GI

GI := {(G0, G1)|G0 ≡ G1}

Definition 2.1.3: GNI

GI := {(G0, G1)|G0 ̸≡ G1}

Fact 2.1.4

GI ∈ NP, the permutation pi is the witness and its length is quadratic in the number

of vertices

8

CHAPTER 2. INTERACTIVE PROOFS 9

Figure 2.1: By Alessandro Chiesa

GI ∈ NP, GNI ∈ coNP, not know if in P

Definition 2.1.5: coNP

{{0, 1}∗\S : S ∈ NP}

NP and coNP are believed to be different. This aligns with intuition since NP essen-

tially states the existence of a witnesses which can be checked whereas coNP says that all

witness aren’t valid. However, GNI is not believed to be coNP-complete because this would

collapse the PH to the 2nd level.

2.1.2 Polynomial Hierarchy

Figure 2.2: By Alessandro Chiesa

CHAPTER 2. INTERACTIVE PROOFS 10

Definition 2.1.6: Σk

For a natural number k, a decision problem S ⊆ {0, 1}∗ is in Σk if there exists a

polynomial p and polynomial-time algorithm V such that x ∈ S iff

∃y1,∈ {0, 1}∗,∀y1 ∈ {0, 1}∗,∃y3 ∈ {0, 1}∗ . . .

s.t. V (x, y1, . . . , yk) = 1.

Definition 2.1.7: Πk

{{0, 1}∗\S : S ∈ Σk}

Definition 2.1.8: PH

PH := ∪kΣk

PH has a simple logical characterisation: it is the set of languages expressible by second-

order logic.

Proposition 2.1.9

For every k ≥ 1, if Σk = Πk, then Σk+1 = Σk, which in turn implies PH = Σk.

Corollary 2.1.10

NP = coNP implies PH = NP since NP = Σ1 and coNP = Π1

2.1.3 IP for Graph Non-Isomorphism Resumed

Theorem 2.1.11: GNI ∈ IP

Proof for Theorem

CHAPTER 2. INTERACTIVE PROOFS 11

Figure 2.3: By Alessandro Chiesa

■

Isomorphism is an equivalence relations which partitions the set of graphs into equiva-

lence classes, this suffices for completeness.

π gives a random instance of the equivalence class which leaks nothing about b

This is an example of a private coin protocol since b must remain private. There exists a

public coin protocol for GNI which is non-trivial.

2.1.4 An Upper Bound on IP

Definition 2.1.12: PSPACE

The set of decision problems which can solved in polynomial space.

Theorem 2.1.13: IP ⊆ PSPACE

Proof for Theorem

CHAPTER 2. INTERACTIVE PROOFS 12

Figure 2.4: By Alessandro Chiesa

■

Definition 2.1.14: Optimal prover for one more round

P ∗(x, (a1, b1, ..., ai, bi)) outputs ai+1 that maximises convincing probability.

Lemma 2.1.15

P ∗ ∈ PSPACE → qx ∈ PSPACE

Proof for Lemma

Since P ∗ is optimal, we have qx =
∑

d(x;r)
|R| where d(x; r) is the decision of V (x; r) when

interacting with P ∗.

Figure 2.5: By Alessandro Chiesa

We begin by calling P ∗ on the empty transcript, then verifier on the a∗1, and so on

and so for. The sum then follows because R is polynomial in size. ■

CHAPTER 2. INTERACTIVE PROOFS 13

Lemma 2.1.16

P ∗ ∈ PSPACE

Proof for Lemma

Let tr = (a1, b1, ..., ai, bi) be a transcript of i rounds.

and let R[x, tr] be the set of random strips consistent with (x, tr).

These set is restricted by
∧i

j=1 bj = V (x, r, a1, ..., aj)

Proof by induction on i:

Base case i = k − 1: try over all possible messages to maximise the probability over

the randomness of the probability that is consistent so far. Computing this takes

exponential time but only polynomial space.

Inductive case Note my inductive hypothesis is that I can compute the answer in poly-

nomial space for all transcripts longer then the current one.

P ∗(x, tr) = argmaxai+1

∑
r∈R[x,tr][V (x, r, a1, ..., ai+1, a

∗
i+2, a

∗
k)] There are many

implicit inner loops but they all return to caller within polynomial space.

■

So we have shown that interactive proofs can only decide problems which could be

computed in polynomial space.

PSPACE is at least as big as the PH but is not larger then EXPT IME or EXPSPACE .

Chapter 3

Unsatisfiability and Counting

Problems

Key concepts in previous chapter:

• Polynomial Hierarchy

• An IPS for GNI

• IP ⊆ PSPACE

Key concepts in this chapter: Arithmetisation, sumcheck protocol

3.1 Unsatisfiability

Definition 3.1.1: UNSAT

For a boolean circuit, is it the case that there are not satisfying assignments

UNSAT ∈ coNP-complete

Theorem 3.1.2: UNSAT ∈ IP

From which it follows that coNP ⊆ IP

Proof for Theorem

Our poof of GNI leveraged specific properties of graph isomorphism, UNSAT doesn’t

appear to have similar properties.

14

CHAPTER 3. UNSATISFIABILITY AND COUNTING PROBLEMS 15

Figure 3.1: By Alessandro Chiesa

In support of the first claim note that the arithmetisation preserves the zeroness of

operators.

3CNF, Conjunctive Normal Form, an And of Ors. No more than three variable per

conjunct. The sum has 2n values it ranges over and each circuit will return at most 3m.

It or clause can be at most three and the number of conjunctions is m.

Not we are assuming that the formula has been adapted so that the not(s) appear at the

lowest level.

Corollary 3.1.3

∀q > 2n3m, ϕ ∈ UNSAT ↔
∑

p(a1, ..., an) = 0 mod q

Sumcheck Protocol
∑

α1,...,αn∈H p(α1, ..., αn) = γ

CHAPTER 3. UNSATISFIABILITY AND COUNTING PROBLEMS 16

Figure 3.2: By Alessandro Chiesa

We only need to send n low degree polynomials. We need |H| to be polynomial but

otherwise the computation is straightforward.

Claim

if
∑

α1,...,αn∈H p(α1, ..., αn) ̸= γ then Pr[verifier accepts] ≤ n∗deg(p)
|F|

A (malicious) prover is characterised by p̃1, ..., p̃n ∈ F[x] where p̃i may depend on

w1, ..., wi

Definition 3.1.4: Ei

event that p̃i = pi

Definition 3.1.5: W

event that verifier accepts

CHAPTER 3. UNSATISFIABILITY AND COUNTING PROBLEMS 17

Lemma 3.1.6

For j = n, n− 1, ..., 1 : Pr[w] ≤ (n−j+1)∗deg(p)
|F| + Pr[w|Ej ∧ ... ∧ En]

Proof for Lemma

This suffices to prove the claim since if j = 1 then Pr[w] ≤ n∗deg(p)
|F| +Pr[w|E1 ∧ ...∧

En]. By definition the probability of the second term is zero when then statement is

false.

Base case j = n :

Pr[W] ≤ Pr[W |Ẽn] + Pr[W |En] ≤ deg(p)
|F| + Pr[W |En]

Figure 3.3: By Alessandro Chiesa

Inductive case: assume it holds for j ∈ ..., n and prove it holds for j − 1

Pr[W] ≤ (n−j+1)∗deg(p)
|F| + Pr[w|Ej ∧ ... ∧ En]

Pr[W] ≤ (n−j+1)∗deg(p)
|F| + Pr[w|Ẽj−1 ∧ Ej ∧ ... ∧ En] + Pr[w|Ej−1 ∧ Ej ∧ ... ∧ En]

Pr[W] ≤ (n−j+1)∗deg(p)
|F| + deg(p)

|F| + Pr[w|Ej−1 ∧ Ej ∧ ... ∧ En]

Pr[W] ≤ (n−(j−1)+1)∗deg(p)
|F| + Pr[w|Ej−1 ∧ Ej ∧ ... ∧ En] ■

CHAPTER 3. UNSATISFIABILITY AND COUNTING PROBLEMS 18

Figure 3.4: By Alessandro Chiesa

q < 2poly(m,n) ■

3.2 P#P ⊆ IP

Definition 3.2.1: P#P

The complexity class of polynomial machines which have access to an oracle which

solves the counting problems associated with NP

PH ⊆ P#P

Theorem 3.2.2: #SAT ∈ IP

From which it follows that P#P ⊆ IP

Proof for Theorem

Our previous arithmetisation was too course. It only told us if a satisfaction assignment

existed or not.

¬x → 1− x x ∧ y → x ∗ y x ∨ y → x+ y − x ∗ y

CHAPTER 3. UNSATISFIABILITY AND COUNTING PROBLEMS 19

Figure 3.5: By Alessandro Chiesa

This arithmetisation does result in higher, but still polynomial, degree polynomials

Let L ∈ P#P and let M be a machine that decides L with a #SAT oracle.

Figure 3.6: By Alessandro Chiesa

■

3.3 IP = PSPACE

Claim: IP = PSPACE

Chapter 4

Applications in Cryptography

4.1 Why I want to hide a witness

In many cases I would like to convince of the truth of the statement but I would rather not

show you the witness. Let me motivate this with an example from secure election voting

Definition 4.1.1: Integer Encryption Scheme

An Integer Encryption Scheme is a tuple of polynomial time algorithms

(KeyGen,Enc,Dec) s.t.

• KeyGen takes a natural number λ and produces a public key y and a secret key

x

• Enc takes a public key pk, and an integer m, some randomness r and produces

a ciphertext c

• Dec takes a secret key sk, and a ciphertext c and produces a number m′

Generally with are after two properties:

Correctness: ∀λ,m, r, 0 ≤ m < 2λ ⇒ Pr[Dec(x, Enc(y,m; r)) = m : (y, x) ∈
KeyGen(λ)] = 1

Hiding: Informally, without knowledge of the secret key no polynomial time algo-

rithm can learn anything about m with non-negligible probability.

Correctness forces Enc to be injective

20

CHAPTER 4. APPLICATIONS IN CRYPTOGRAPHY 21

Definition 4.1.2: Homomorphic Natural Encryption Scheme

As above with the additional property that their exists an algorithm Com which

takes two ciphertext and returns a ciphertext such that:

∀λ,m,m′, r, r′, 0 ≤ m+m′ < 2λ ⇒

Pr[Dec(x, Comb(Enc(y,m; r′)Enc(y,m′; r))) = m+m′ : (y, x) ∈ KeyGen(λ)] = 1

Definition 4.1.3: A Voting Protocol for Referendums

Our voting protocol will consist of one authority A and n voters V1, ..., Vn

1. A runs KeyGen and sends public key y to all voters and keeps x private

2. Each voter Vi encrypts their yes, encoded as 1, or no vote, encoded as 0,

Enc(y, vi; ri) and send the resulting ciphertext ci to A

3. A computes ct := Combni=1ci and published the tally Dec(x, ct)

The protocol above protocol has several problems from an integrity standpoint:

1. A dishonest authority can publish an incorrect tally

2. A dishonest voter could encrypt an integer other than zero or one

Both of these problems could be addressed by proving the correct computation of Enc and

Dec respectively by revealing the inputs to the functions. However, to reveal the input to Enc

would break the privacy of the voter whereas to reveal the secret key used in Dec would break

the privacy of all voters.

What I want to do is to prove that a satisfactory pre-image of the function exists without

revealing what it is.

4.2 Zero-knowledge proofs

Definition 4.2.1: One way functions

A polynomial time algorithm f is one way if for all polynomial time algorithm F :

Pr[f(F (f(x))) = f(x)] < n−c

Claim

Assuming the existence of one way functions there exists Zero-Knowledge proofs for

IP = PSPACE

Intuitively the zero-knowledge property means the verifier learns nothing about the wit-

ness

CHAPTER 4. APPLICATIONS IN CRYPTOGRAPHY 22

Definition 4.2.2: An alternative IPS for GI

Figure 4.1: By Alessandro Chiesa

Completeness is immediate from the definition of GI and equivalence classes.

Soundness: if G0 and G1 are not isomorphic then H can be isomorphic to at most

one of them. If the corresponding b is sampled P will be caught.

Definition 4.2.3: Honest Verifier Zero-Knowledge

An interactive proof (P, V) for L is honest verifier zero-knowledge if there exists a

polynomial-time simulator S such that

∀x ∈ L, S(x) ≡ V iewV (< P, V > (x))

This essentially says the verifier could simulate the entire conversation without talk-

ing to the honest prover.

Definition 4.2.4: Zero-Knowledge

An interactive proof (P, V) for L is (malicious-verifier) zero-knowledge if there exists

a polynomial-time simulator S such that

∀x ∈ L, ∀pptṼ S(Ṽ , x) ≡ V iewṼ (< P, Ṽ > (x))

Zero-knowledge is a really weird property and is justified by how it used in high level

protocols.

Returning to our voting example, privacy for such a protocol would commonly be defined as

the adversary’s view in the honest protocol being indistinguishable from a protocol where each

of the voters encrypted nonsense. The security of the encryption schemes allows me to swap

the ciphertexts for non-sense and zero-knowledge allows me to simulate the zero-knowledge

proofs.

CHAPTER 4. APPLICATIONS IN CRYPTOGRAPHY 23

Claim

There exists a generic transform from Honest Verifier Zero-Knowledge to Zero-

Knowledge (under some computational assumptions)

4.3 Digital Signatures

This material is shamelessly copied with slight modifications from Ivan Damg̊ard’s intro-

duction “On Σ-protocols.”

Definition 4.3.1: DL

For a given (cyclic) group G and generator g the language of discrete logs {(x,w)|x =

(g, h), h = gw}

The best know algorithm for computing discrete logs for a generic group takes exponential

time

Sigma protocols are particularly simple and efficient zero knowledge proof of knowledge.

Definition 4.3.2: Sigma protocols

A protocol P is said to be a Σ-protocol for relation R if:

• P is a 3-move form, and we have completeness: if P, V follow the protocol on

input x and private input w to P where (x,w) ∈ R, the verifier always accepts.

• From any x and any pair of accepting conversations on input x, (c, e, r)(c, e′, r′)

where e ̸= e′, one can efficiently compute w such that (x,w) ∈ R. (Special

soundness)

• There exists a polynomial-time simulator M , which on input x and a random e

outputs an accepting conversation of the form (c, e, r) with the same probability

distribution as conversation between the honest P, V on input x. (Honest-

verifier zero-knowledge)

A = gx, x

Alice

c = gy

e ∈ Zp

r = y + ex Bob

gr = cAe

Binding: After Alice commits we choose a random challenge

If she can answer correctly for two separate challenges then we have (c,e,r)(c,e’,r’).

x = (r − r′)/(e− e′)

CHAPTER 4. APPLICATIONS IN CRYPTOGRAPHY 24

Hiding: Observe that the only part of the protocol which depends upon the secret is r

r is uniformly distributed by y

y is only otherwise revealed by c = gy where it is hard to find by the discrete log

problem

4.4 Interaction is such a pain

m,A = gx, x

Alice

c = gy

e = H(A, c,m)

r = y + ex

m, (c, r)

Bob

e = H(A, c,m)

gr = cAe

Chapter 5

Probabilistically Checkable

Proofs

Many NP-hard problems can be approximated. That is, there exists polynomial algorithms

which return results within a known bound of the optimal solution. For some problems,

such as the famous knapsack problem, these errors margins can be arbitrarily small.

Definition 5.0.1: Knapsack Problem

For a given set {vi}ni=1 with associated weights {wi ∈ N}ni=1 and a capacity W ∈ N:

(max

n∑
i=1

vixi) ≤ W

when xi ∈ {0, 1}

This leads to the natural question if all NP-hard problems be approximated with arbi-

trary precision.

Bizarrely the answer to this question from the interactive proofs we already seen.

I won’t give a full explanation here, interested readers are recommend to read ”The Tale

of the PCP Theorem” by Dana Moshkovitz https://www.cs.utexas.edu/~danama/XRDS.

pdf. The basic gist is:

• For some bound x, the hardness of x-approximation is related to the hardness of

deciding if two solutions are x apart.

• The hardness of deciding if two solutions are x apart is related to the length of the

mathematical proof for the statement.

5.1 Definition of PCP
PCPs still have randomness but rather than interaction have oracle access to the proof

25

https://www.cs.utexas.edu/~danama/XRDS.pdf
https://www.cs.utexas.edu/~danama/XRDS.pdf

CHAPTER 5. PROBABILISTICALLY CHECKABLE PROOFS 26

Definition 5.1.1: PCP

A PCP System for S is a pair of algorithms (P, V), where P is unbounded and V is

a polynomial time oracle algorithm, with completeness error ϵc and soundness error

ϵs s.t.:

1. Completeness: For ever x ∈ S, for π := P (x), Pr[V π(x; r) = 1] ≥ 1− ϵc

2. Soundness: For every x /∈ S, for every π̃, Pr[V π̃(x; r) = 1] ≤ ϵs

Things we care about include:

Σ: proof alphabet

l: proof length

q: verifier query complexity

r: verifier randomness complexity

Figure 5.1: By Alessandro Chiesa

Claim: PCP [r = 0, q = 0] = P

Claim: PCP [r = O(log n)), q = 0] = P

Claim: PCP [r = poly(n), q = 0] = BPP

Claim: PCP [r = 0, q = poly(n)] = NP

Theorem 5.1.2: IP ⊆ PCP

CHAPTER 5. PROBABILISTICALLY CHECKABLE PROOFS 27

Proof for Theorem

Suppose that (P, V) is a public-coin IPS for S. (Public coin is WLOG.)

Consider the union of all possible transcripts. Π = {ar1}r1 ∪ ... ∪ {ar1,...,rk}r1,...,rk
The verifier samples r1, .., rk and accepts if the IPS verifier accepts:

V (x, ar1 , ar1,r2 , ...; r1, ..., rk) = 1

Completeness follows immediately from the IP completeness.

The proof is a complete commitment to a proof strategy.

Soundness then follows from the soundness of the IP verifier. ■

5.2 PCP Theorem

Theorem 5.2.1: PCP Theorem

PCP[r = O(log n), q = O(1)] = NP

Proof for Theorem

That is for all problems in NP there exists a PCP system for the problem which uses a

logarithmic amount of randomness and looks at a constant amount of the proof.

This theorem is the result of a line of work by Arora, Feige, Goldwasser, Lund, Lovász,

Motwani, Safra, Sudan, and Szeged; the margins of these lecture notes is not large enough

for the proof.

The intuition is that we encode the existing proof in an error correcting code, that

is a polynomial.

It then suffices to check that the polynomial is zero using the sumcheck protocol we saw

before.

This could be interpreted as using a circuit to catch my verification routine and get-

ting the prover to show that there exists a satisfying proof. ■

This theorem results in a weird situation where reading the statement is most of the work

Amazingly we have PCPs1 with efficient provers which can be used in practice.

One of my honours students recently did some work where for a referendum of 224 voters

(roughly the number of eligible voters in the Australian 2023 Voice referendum) we reduced

the verification time from the naive verification lower bound of approximately 77 core-days

to a projected time of 2.57 core-minutes for the proposed protocol, and reduces the sizes of

the inputs from the naive 37.92 GB to a total proof size of 1.54 GB.

1well sort of PCPs, formally interactive arguments

Chapter 6

Bonus: Average-Case

Complexity

I want to spend a little time discussing how complexity theory affects practical computation

and cryptography.

Recommend Reading: Russell Impagliazzo’s A Personal View of Average-Case Complex-

ity (Sections 1 and 2)

• The paper is from 1995 some of the comments on cryptography are outdated

6.1 Average-case complexity

Average-case complexity:

Prx∈RDn
[tA(x) ≥ t] ≤ p(n)

tϵ

• A “hard” (NP-complete) problem may be easily decidable for almost all problems

• In cryptography we want to be able to efficiently generate hard instances

6.2 Five worlds

Russell Impagliazzo describes five possible worlds which he describes in terms of Professor

Grouse (the teach of the young Gauss) attempting to humiliate the young Gauss by inventing

problems Gauss couldn’t solve. (Historically this result in Grouse being committed to a

lunatic asylum.)

28

CHAPTER 6. BONUS: AVERAGE-CASE COMPLEXITY 29

Definition 6.2.1: Algorithmica

• P = NP (or equivalent)

• It’s as easy to recognise a solution as to produce it (at least asymptotically)

• Would solve all kinds of optimisation problems

• No cryptography based on computational hard problems (only information-

theoretic constructions)

Definition 6.2.2: Heuristica

• NP problems are intractable in the worst case but feasible on average for any

samplable distribution

• There are hard problems but they are hard to find

• Are the problems we want to solve hard to find?

• No cryptography based on computational hard problems (only information-

theoretic constructions)

Definition 6.2.3: Pessiland

• Hard average case problems but no one-way functions (PRP, PRG, hash func-

tions)

• It’s easy to generate hard instances but not hard solved instances

• No cryptography based on computational hard problems (only information-

theoretic constructions)

Definition 6.2.4: Minicrypt

• One-way functions exist but not public key encryption

• We don’t actually know what the necessary and sufficient condition for public

key cryptography is

Definition 6.2.5: Cryptomania

• (Clearly the world we are in even if not for the reason Russell meant)

• Public key encryption is possible

	Background on Non-Interactive Proof Systems
	P vs NP
	Introducing IP

	Interactive Proofs
	How big is IP?
	IP for Graph Non-Isomorphism
	Polynomial Hierarchy
	IP for Graph Non-Isomorphism Resumed
	An Upper Bound on IP

	Unsatisfiability and Counting Problems
	Unsatisfiability
	P#P IP
	IP = PSPACE

	Applications in Cryptography
	Why I want to hide a witness
	Zero-knowledge proofs
	Digital Signatures
	Interaction is such a pain

	Probabilistically Checkable Proofs
	Definition of PCP
	PCP Theorem

	Bonus: Average-Case Complexity
	Average-case complexity
	Five worlds

