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The Strange Coincidence

It seems bizarre or arbitrary that logic and computation should come 
together like this

• Why should Church’s 1930s algorithm for universal models of computation be 
the same as Prawitz’s 1960s algorithm for tidying up needlessly complex 
proofs?

• Moreover, this keeps happening: beyond Prawitz-Church we have Hindley-
Milner; Girard-Reynolds; Parigot-(Sussman and Steele). Each is a logician-
computer scientist pair independently inventing the same algorithms for the 
purposes of their field.

• This is not even counting newer work that deliberately moves concepts back 
and forth, e.g. modal types.



Return to BHK

I think the clue lies in this part of the BHK interpretation:

“A proof of A→B is a construction which permits us to transform any 
proof of A into a proof of B”

A ‘construction that permits a transformation’ is an odd informal 
phrase, but its mathematical counterpart is clearly that of function.

Hence a formal treatment of the BHK interpretation of implication in 
intuitionistic logic seems to require some sort of ‘theory of functions’

• Like the lambda calculus!

• This is not to say that Curry-Howard only applies to implication and functions;

• But this is the heart of the isomorphism, where it is most obvious



Some Aspects of Curry-Howard

Propositions Types

Proofs Programs

Proof Normalisation Beta-Reduction

Assumptions Free Variables

Function Type-Former Implication

Other Type-Formers Other Logical Connectives



Lambda Calculus as Notation for Proofs

If nothing more, the lambda calculus is a formal notation for natural 
deduction proofs, so we don’t always need to write out trees.

By writing proofs in this notation, a computer can check we have made 
no mistakes.

• So long as type-checking for the lambda calculus can be automated

• (which it can)

The question whether a proposition is valid can be restated as type 
inhabitation: does a program exist with this type?



Examples of Type Inhabitation

The theorem A→A is inhabited by, for example:

λxA.x - the identity function, sometimes called ‘I’

The axiom A→(B→A) is inhabited by:

λxA.λyB.x - this function is often called ‘K’

The axiom (A→B)→((A→(B→C))→(A→C)) is inhabited by:

λfA→B.λgA→(B→C).λxA.(gx)(fx) - a.k.a. ‘S’

Nothing new here! We’ve seen these as natural deduction proofs.



Other Connectives: ∧ and ×

∧ is defined via a pair of proofs; hence, a pair of programs
• We call the collection of such a pairs a product, and write it with ×

• Introduction is pairing; Elimination is projection

Γ ⊢ t:A Γ ⊢ u:B

Γ ⊢ <t,u>:A×B

Γ ⊢ p:A×B Γ ⊢ p:A×B

Γ ⊢ π1p:A Γ ⊢ π2p:B



Products and the Lambda Calculus

Unlike λ and application, pairing and projection are not part of the 
untyped lambda calculus.

• They are not needed, as pairs can be encoded

• But moving to STLC breaks our encodings

• As it should! We want products to be their own type so e.g. you can only take 
the first projection of a term of product type.

Similar comments apply to other connectives



Other Connectives: ∨ and +

∨ is defined via one proof, which is one side of the disjunction 
• Like products, this is a concept which comes up in programming;
• When we package different types together we call the resulting type a sum, 

or disjoint union. We will use the + symbol (sometimes | is used instead);
• Introduction is injection; Elimination is case matching

Γ ⊢ t:A Γ ⊢ t:B

Γ ⊢ ι1t:A+B Γ ⊢ ι2t:A+B

Γ ⊢ s:A+B Γ,x:A ⊢ t:C Γ,y:B ⊢ u:C

Γ ⊢ 𝛿[s,x.t,y.u]:C



Other Connectives: ⊥ and 0

⊥ corresponds to a type with no elements
• Usually written 0

• Admittedly not very useful for basic functional programming

Γ ⊢ t:0

Γ ⊢ εt:A

Sums and the empty type, as with products, have their own notions of 
reduction / normalisation, but I will focus on → and × for now.



Roundabout Proofs with Conjunction

Recall the ‘roundabout’ (part of a) proof:

A B

A∧B

A

We thought this should be reducible to the top left proof of A



Roundabout Programs with Products

Translated into lambda calculus:

Γ ⊢ t:A Γ ⊢ u:B

Γ ⊢ <t,u>:A×B

Γ ⊢ π1<t,u>:A

Following the previous slide, can we reduce to the top-level program?
• Yes! This is the reduction one might expect, π1<t,u> ↦ t

• π2<t,u> ↦ u motivated similarly



Another Roundabout Proof with Conjunction

How about this roundabout?

A∧B A∧B

A B

A∧B

(where the two top proofs of A∧B are the same)

This suggests another reduction
• <π1t,π2t> ↦ t 

This is called an eta (instead of beta) rule
• Important for powerful type systems, but not needed for basic functional 

languages, so I will ignore in this course (also for other connectives).



Important Properties

What would we like to be true about the typed computational system 
we are building?

Subject Reduction / Preservation / Soundness:
• If Γ ⊢ t:A and  t ↦ u then  Γ ⊢ u:A

Canonicity / Progress / Completeness:
• We’re not ready to define this yet, but we do not want reduction to end until 

we’ve reached our tidiest possible proof / sensible result of computation

Strong Normalisation:
• No infinite loops by applying reduction repeatedly

• (‘weak’ normalisation asks whether there is any finite path to termination)



Important Properties for Products

Subject Reduction:
• General definition: if Γ ⊢ t:A and  t ↦ u then  Γ ⊢ u:A

• If Γ ⊢ π1<t,u>:A then  Γ ⊢ t:A

• If Γ ⊢ π2<t,u>:B then  Γ ⊢ u:B

• Trivial to prove these facts from the proof rules

Strong Normalisation:
• π1<t,u> ↦ t and π2<t,u> ↦ t reduce the size of terms

• If the original term is finitely long, we can only reduce finitely many times



Roundabout Proofs with Implication

Follow the introduction-then-elimination pattern as for products:

[A]

B

A→B A

B

We cannot just replace the final proof of B with the earlier proof of B
• The earlier proof of B has A as an assumption
• Not killed if we get rid of the →I rule
• But we can replace the assumption A with the right hand proof of A!



Assumption Replacement as Substitution

A proof of B with an assumption A, plus a proof of A, should always 
give us a proof of B without the assumption A.

• What does this mean in the language of the lambda calculus?

• Replace all occurrences of a free variable of type A with a term of type A

This is substitution!

Substitution lemma: If Γ,x:A ⊢ t:B and Γ ⊢ u:A then                      
Γ ⊢ t[u/x]:B

The roundabout elimination from the previous slides is then    
(λx.t)u ↦ t[u/x] as expected!



Subject Reduction

Substitution lemma: If Γ,x:A ⊢ t:B and Γ ⊢ u:A then                      
Γ ⊢ t[u/x]:B

Follows by induction on proof rules.

Hence

Subject Reduction holds for the system with functions and products
• If Γ ⊢ t:A and  t ↦ u then  Γ ⊢ u:A



Induction on Proof Rules

I don’t want to sweat too many proof details in these lectures
• But it would be good to understand what ‘induction on proof rules’ involves

• Used a lot to prove properties of type systems

Assume that a certain property holds for all premises of each proof 
rule, and show that it holds for the conclusion

• Let’s look at some cases for the substitution lemma



Substitution Lemma: Base Cases

“If Γ,x:A ⊢ t:B and Γ ⊢ u:A then Γ ⊢ t[u/x]:B”

Two cases to consider for the axiom rule:
• If Γ,x:A ⊢ x:A and Γ ⊢ u:A then Γ ⊢ x[u/x]=u:A
• If Γ,y:B,x:A ⊢ y:B and Γ,y:B ⊢ u:A then Γ,y:B ⊢ y[u/x]=y:B

The first case, where the variable substituted is the same as the 
variable introduced, follows immediately.

The second case, where the two variables are different, follows 
because we can introduce y:B regardless of any other variables.



Substitution Lemma: →E

“If Γ,x:A ⊢ t:B and Γ ⊢ u:A then Γ ⊢ t[u/x]:B”

Γ,x:A ⊢ f:C→B Γ,x:A ⊢ t:C

Γ,x:A ⊢ ft:B

By induction Γ ⊢ f[u/x]:C→B and Γ ⊢ t[u/x]:C

Hence by →E we have  Γ ⊢ (f[u/x])(t[u/x]):B

But (f[u/x])(t[u/x]) is (ft)[u/x]



Strong Normalisation

Strong normalisation does not hold in the easy way it did for products
• (λx.t)u ↦ t[u/x] will not necessarily reduce the length of the term

It also does not hold in any obvious way by induction on proof rules

Γ ⊢ f:A→B Γ ⊢ t:A

Γ ⊢ ft:B

Suppose for induction that f and t are strongly normalising
• Say f reduces to normal form f’ and t to normal form t’

• Then ft reduces to f’t’ but this need not be normal: f’ could start with λ



Tait’s Method

We prove by induction a property that is stronger than strong 
normalisation.

• This method is outlined in detail in Chapter 6 of Proofs and Types

Define, for each type A, a set REDA of untyped lambda terms
• We call these the reducible terms of type A
• For any base type b, t ∈ REDb if t is strongly normalising
• t ∈ REDA×B if π1t ∈ REDA and π2t ∈ REDB
• t ∈ REDA→B if for all u ∈ REDA we have tu ∈ REDB

We then prove by induction on the RED sets that all reducible terms are 
strongly normalizing, and by induction on typing rules that all terms of 
type A are in REDA.

https://www.paultaylor.eu/stable/prot.pdf


Canonicity

Remember that we want a property called canonicity that captures the 
idea that the rules of reduction are `strong enough’.

This is easiest to see if we have some inhabited base types
• Suppose we have a base type Bool with two elements, True and False
• We would like terms of type Bool to compute until they return one of these 

two elements, not ‘get stuck’ prematurely
• This fails for arbitrary terms with free variables, e.g. x:Bool ⊢ x:Bool

So this is a property of closed terms with no free variables
• ⊢ t:Bool and t is normal (cannot reduce), then t is either True or False



Canonicity, Generally

Canonicity for Bool is proved by a general statement:
• If ⊢ t:A and t is normal then its outermost connective is an introduction 

rule.
• So closed terms of function types start with λ; of product type are pairs; and 

of type Bool are True or False.
• Simple proof by induction on the length of terms.

For the intuitionist, this is a perfect match for the BHK interpretation!
• A normal proof of an implication theorem is always a λ-abstraction, i.e. a 

function
• A normal proof of a conjunction theorem is always a pair of proofs of 

theorems



Roundabout Proofs with Disjunction

The introduction-then-elimination pattern:

A [A] [B]

A∨B C C

C

We return the first proof of C in the line above (discarding the second) 
but with assumption A replaced by the proof of A

• Similarly if A∨B came via ∨I2 from B

• ⊥ does not need a new beta rule at all – no introduction, no roundabouts!



Beta Reduction Summarised

Five beta rules:
• (λx.t)u ↦ t[u/x]

• π1<t,u> ↦ t

• π2<t,u> ↦ t

• 𝛿[ι 1r,x.t,y.u] ↦ t[r/x]

• 𝛿[ι 2r,x.t,y.u] ↦ u[r/y]

The properties of subject reduction, strong normalisation, and canonicity all 
continue to hold.

But there is one further desirable property that holds for the function-
product fragment, but fails when we add sums and/or the empty type….



Subformula Property

It can sometimes seem difficult to write a natural deduction proof:

A→B A

B

Where does A come from? Could it be anything?

In fact there is a remarkable theorem called the subformula property:

If Γ ⊢ t:B and t is normal, then all subterms of t have a type that is a 
subtype of B, or a subtype of some type in Γ.

• So there are only finitely many (normal) choices of A in the example above



Failure of the Subformula Property

The subformula property fails for disjunction and falsum:

[A] [A] [A] [A]

A∨A A∧A A∧A ⊥

A∧A A∧B

A A
• These derivations are normal:
• πi𝛿[s,x.<x,x>,y.<y,y>] and π1εz
• But A∧A not a subformula of A∨A or A, and A∧B not a subformula of ⊥ or A

The problem is the arbitrary ‘parasitic’ conclusion of ∨E and ⊥E



New Conversions for ⊥

⊥E followed by an elimination reduces to ⊥E:
• π1εA∧Bt ↦ εAt
• π2εA∧Bt ↦ εBt
• (εA→Bt)u ↦ εBt
• 𝛿C[εA∨Bt,x.u,y.v] ↦ εCt
• εAε⊥t ↦ εAt

In terms of functions:
• There is always exactly one (trivial) function from 0 to anything else

With these new conversions the subformula property holds
• The old properties need to be rechecked, but happily also still hold



New Conversions for ∨ - Example 

Where ∨E is followed by an elimination, push the elimination up:

[A] [B] [A] [B]

A∨B C∧D C∧D to C∧D C∧D

C∧D A∨B C C

C C

These are collectively known as the commuting conversions.



Commuting Conversions for ∨

• π1𝛿[s,x.t,y.u] ↦ 𝛿[s,x.π1t,y.π1u]

• π2𝛿[s,x.t,y.u] ↦ 𝛿[s,x.π2t,y.π2u]

• (𝛿[s,x.t,y.u])v ↦ 𝛿[s,x.t v,y.u v]

• ε𝛿[s,x.t,y.u] ↦ 𝛿[s,x.εt,y.εu]

• 𝛿[𝛿[s,x.t,y.u],x’.t’,y’.u’]

↦ 𝛿[s,x.𝛿[t,x’.t’,y’.u’],𝛿[u,x’.t’,y’.u’]]

These are not all easy to read!
• But do give us the subformula property without sacrificing other properties



Checking our Counter-Examples

The counter-example to the subformula property for ⊥ resolves easily:

⊥

A∧B to ⊥

A A

i.e. π1εz ↦ εz



Checking our Counter-Examples

The counter-example for ∨:

[A] [A] [A] [A]

A∨A A∧A A∧A

A∧A

A

i.e. πi𝛿[s,x.<x,x>,y.<y,y>]



Checking our Counter-Examples

The counter-example for ∨:

[A] [A] [A] [A]

A∧A A∧A

A∨A A A

A

i.e. πi𝛿[s,x.<x,x>,y.<y,y>] ↦ 𝛿[s,x.πi<x,x>,y.πi<y,y>] 



Checking our Counter-Examples

The counter-example for ∨:

A∨A [A] [A]

A

i.e. πi𝛿[s,x.<x,x>,y.<y,y>] ↦ 𝛿[s,x.πi<x,x>,y.πi<y,y>]

↦ 𝛿[s,x.x,y.y] 



Conclusion

• There is an isomorphism between certain sorts of logic and certain 
sorts of programs

• The connectives of propositional logic correspond to type-formers

• Hence the formulae of logic correspond to types

• Natural deduction proofs correspond to functional programs

• Proof Normalisation corresponds to Beta-Reduction
• Perhaps with commuting conversions, or even eta conversions

• The remainder of our time will be spent extending these key ideas
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