
Propositions and Types, Proofs
and Programs

Part IV: Curry-Howard

Ranald Clouston

School of Computing

Australian National University

ANU Logic Summer School 2023

The Strange Coincidence

It seems bizarre or arbitrary that logic and computation should come
together like this

• Why should Church’s 1930s algorithm for universal models of computation be
the same as Prawitz’s 1960s algorithm for tidying up needlessly complex
proofs?

• Moreover, this keeps happening: beyond Prawitz-Church we have Hindley-
Milner; Girard-Reynolds; Parigot-(Sussman and Steele). Each is a logician-
computer scientist pair independently inventing the same algorithms for the
purposes of their field.

• This is not even counting newer work that deliberately moves concepts back
and forth, e.g. modal types.

Return to BHK

I think the clue lies in this part of the BHK interpretation:

“A proof of A→B is a construction which permits us to transform any
proof of A into a proof of B”

A ‘construction that permits a transformation’ is an odd informal
phrase, but its mathematical counterpart is clearly that of function.

Hence a formal treatment of the BHK interpretation of implication in
intuitionistic logic seems to require some sort of ‘theory of functions’

• Like the lambda calculus!

• This is not to say that Curry-Howard only applies to implication and functions;

• But this is the heart of the isomorphism, where it is most obvious

Some Aspects of Curry-Howard

Propositions Types

Proofs Programs

Proof Normalisation Beta-Reduction

Assumptions Free Variables

Function Type-Former Implication

Other Type-Formers Other Logical Connectives

Lambda Calculus as Notation for Proofs

If nothing more, the lambda calculus is a formal notation for natural
deduction proofs, so we don’t always need to write out trees.

By writing proofs in this notation, a computer can check we have made
no mistakes.

• So long as type-checking for the lambda calculus can be automated

• (which it can)

The question whether a proposition is valid can be restated as type
inhabitation: does a program exist with this type?

Examples of Type Inhabitation

The theorem A→A is inhabited by, for example:

λxA.x - the identity function, sometimes called ‘I’

The axiom A→(B→A) is inhabited by:

λxA.λyB.x - this function is often called ‘K’

The axiom (A→B)→((A→(B→C))→(A→C)) is inhabited by:

λfA→B.λgA→(B→C).λxA.(gx)(fx) - a.k.a. ‘S’

Nothing new here! We’ve seen these as natural deduction proofs.

Other Connectives: ∧ and ×

∧ is defined via a pair of proofs; hence, a pair of programs
• We call the collection of such a pairs a product, and write it with ×

• Introduction is pairing; Elimination is projection

Γ ⊢ t:A Γ ⊢ u:B

Γ ⊢ <t,u>:A×B

Γ ⊢ p:A×B Γ ⊢ p:A×B

Γ ⊢ π1p:A Γ ⊢ π2p:B

Products and the Lambda Calculus

Unlike λ and application, pairing and projection are not part of the
untyped lambda calculus.

• They are not needed, as pairs can be encoded

• But moving to STLC breaks our encodings

• As it should! We want products to be their own type so e.g. you can only take
the first projection of a term of product type.

Similar comments apply to other connectives

Other Connectives: ∨ and +

∨ is defined via one proof, which is one side of the disjunction
• Like products, this is a concept which comes up in programming;
• When we package different types together we call the resulting type a sum,

or disjoint union. We will use the + symbol (sometimes | is used instead);
• Introduction is injection; Elimination is case matching

Γ ⊢ t:A Γ ⊢ t:B

Γ ⊢ ι1t:A+B Γ ⊢ ι2t:A+B

Γ ⊢ s:A+B Γ,x:A ⊢ t:C Γ,y:B ⊢ u:C

Γ ⊢ 𝛿[s,x.t,y.u]:C

Other Connectives: ⊥ and 0

⊥ corresponds to a type with no elements
• Usually written 0

• Admittedly not very useful for basic functional programming

Γ ⊢ t:0

Γ ⊢ εt:A

Sums and the empty type, as with products, have their own notions of
reduction / normalisation, but I will focus on → and × for now.

Roundabout Proofs with Conjunction

Recall the ‘roundabout’ (part of a) proof:

A B

A∧B

A

We thought this should be reducible to the top left proof of A

Roundabout Programs with Products

Translated into lambda calculus:

Γ ⊢ t:A Γ ⊢ u:B

Γ ⊢ <t,u>:A×B

Γ ⊢ π1<t,u>:A

Following the previous slide, can we reduce to the top-level program?
• Yes! This is the reduction one might expect, π1<t,u> ↦ t

• π2<t,u> ↦ u motivated similarly

Another Roundabout Proof with Conjunction

How about this roundabout?

A∧B A∧B

A B

A∧B

(where the two top proofs of A∧B are the same)

This suggests another reduction
• <π1t,π2t> ↦ t

This is called an eta (instead of beta) rule
• Important for powerful type systems, but not needed for basic functional

languages, so I will ignore in this course (also for other connectives).

Important Properties

What would we like to be true about the typed computational system
we are building?

Subject Reduction / Preservation / Soundness:
• If Γ ⊢ t:A and t ↦ u then Γ ⊢ u:A

Canonicity / Progress / Completeness:
• We’re not ready to define this yet, but we do not want reduction to end until

we’ve reached our tidiest possible proof / sensible result of computation

Strong Normalisation:
• No infinite loops by applying reduction repeatedly

• (‘weak’ normalisation asks whether there is any finite path to termination)

Important Properties for Products

Subject Reduction:
• General definition: if Γ ⊢ t:A and t ↦ u then Γ ⊢ u:A

• If Γ ⊢ π1<t,u>:A then Γ ⊢ t:A

• If Γ ⊢ π2<t,u>:B then Γ ⊢ u:B

• Trivial to prove these facts from the proof rules

Strong Normalisation:
• π1<t,u> ↦ t and π2<t,u> ↦ t reduce the size of terms

• If the original term is finitely long, we can only reduce finitely many times

Roundabout Proofs with Implication

Follow the introduction-then-elimination pattern as for products:

[A]

B

A→B A

B

We cannot just replace the final proof of B with the earlier proof of B
• The earlier proof of B has A as an assumption
• Not killed if we get rid of the →I rule
• But we can replace the assumption A with the right hand proof of A!

Assumption Replacement as Substitution

A proof of B with an assumption A, plus a proof of A, should always
give us a proof of B without the assumption A.

• What does this mean in the language of the lambda calculus?

• Replace all occurrences of a free variable of type A with a term of type A

This is substitution!

Substitution lemma: If Γ,x:A ⊢ t:B and Γ ⊢ u:A then
Γ ⊢ t[u/x]:B

The roundabout elimination from the previous slides is then
(λx.t)u ↦ t[u/x] as expected!

Subject Reduction

Substitution lemma: If Γ,x:A ⊢ t:B and Γ ⊢ u:A then
Γ ⊢ t[u/x]:B

Follows by induction on proof rules.

Hence

Subject Reduction holds for the system with functions and products
• If Γ ⊢ t:A and t ↦ u then Γ ⊢ u:A

Induction on Proof Rules

I don’t want to sweat too many proof details in these lectures
• But it would be good to understand what ‘induction on proof rules’ involves

• Used a lot to prove properties of type systems

Assume that a certain property holds for all premises of each proof
rule, and show that it holds for the conclusion

• Let’s look at some cases for the substitution lemma

Substitution Lemma: Base Cases

“If Γ,x:A ⊢ t:B and Γ ⊢ u:A then Γ ⊢ t[u/x]:B”

Two cases to consider for the axiom rule:
• If Γ,x:A ⊢ x:A and Γ ⊢ u:A then Γ ⊢ x[u/x]=u:A
• If Γ,y:B,x:A ⊢ y:B and Γ,y:B ⊢ u:A then Γ,y:B ⊢ y[u/x]=y:B

The first case, where the variable substituted is the same as the
variable introduced, follows immediately.

The second case, where the two variables are different, follows
because we can introduce y:B regardless of any other variables.

Substitution Lemma: →E

“If Γ,x:A ⊢ t:B and Γ ⊢ u:A then Γ ⊢ t[u/x]:B”

Γ,x:A ⊢ f:C→B Γ,x:A ⊢ t:C

Γ,x:A ⊢ ft:B

By induction Γ ⊢ f[u/x]:C→B and Γ ⊢ t[u/x]:C

Hence by →E we have Γ ⊢ (f[u/x])(t[u/x]):B

But (f[u/x])(t[u/x]) is (ft)[u/x]

Strong Normalisation

Strong normalisation does not hold in the easy way it did for products
• (λx.t)u ↦ t[u/x] will not necessarily reduce the length of the term

It also does not hold in any obvious way by induction on proof rules

Γ ⊢ f:A→B Γ ⊢ t:A

Γ ⊢ ft:B

Suppose for induction that f and t are strongly normalising
• Say f reduces to normal form f’ and t to normal form t’

• Then ft reduces to f’t’ but this need not be normal: f’ could start with λ

Tait’s Method

We prove by induction a property that is stronger than strong
normalisation.

• This method is outlined in detail in Chapter 6 of Proofs and Types

Define, for each type A, a set REDA of untyped lambda terms
• We call these the reducible terms of type A
• For any base type b, t ∈ REDb if t is strongly normalising
• t ∈ REDA×B if π1t ∈ REDA and π2t ∈ REDB
• t ∈ REDA→B if for all u ∈ REDA we have tu ∈ REDB

We then prove by induction on the RED sets that all reducible terms are
strongly normalizing, and by induction on typing rules that all terms of
type A are in REDA.

https://www.paultaylor.eu/stable/prot.pdf

Canonicity

Remember that we want a property called canonicity that captures the
idea that the rules of reduction are `strong enough’.

This is easiest to see if we have some inhabited base types
• Suppose we have a base type Bool with two elements, True and False
• We would like terms of type Bool to compute until they return one of these

two elements, not ‘get stuck’ prematurely
• This fails for arbitrary terms with free variables, e.g. x:Bool ⊢ x:Bool

So this is a property of closed terms with no free variables
• ⊢ t:Bool and t is normal (cannot reduce), then t is either True or False

Canonicity, Generally

Canonicity for Bool is proved by a general statement:
• If ⊢ t:A and t is normal then its outermost connective is an introduction

rule.
• So closed terms of function types start with λ; of product type are pairs; and

of type Bool are True or False.
• Simple proof by induction on the length of terms.

For the intuitionist, this is a perfect match for the BHK interpretation!
• A normal proof of an implication theorem is always a λ-abstraction, i.e. a

function
• A normal proof of a conjunction theorem is always a pair of proofs of

theorems

Roundabout Proofs with Disjunction

The introduction-then-elimination pattern:

A [A] [B]

A∨B C C

C

We return the first proof of C in the line above (discarding the second)
but with assumption A replaced by the proof of A

• Similarly if A∨B came via ∨I2 from B

• ⊥ does not need a new beta rule at all – no introduction, no roundabouts!

Beta Reduction Summarised

Five beta rules:
• (λx.t)u ↦ t[u/x]

• π1<t,u> ↦ t

• π2<t,u> ↦ t

• 𝛿[ι 1r,x.t,y.u] ↦ t[r/x]

• 𝛿[ι 2r,x.t,y.u] ↦ u[r/y]

The properties of subject reduction, strong normalisation, and canonicity all
continue to hold.

But there is one further desirable property that holds for the function-
product fragment, but fails when we add sums and/or the empty type….

Subformula Property

It can sometimes seem difficult to write a natural deduction proof:

A→B A

B

Where does A come from? Could it be anything?

In fact there is a remarkable theorem called the subformula property:

If Γ ⊢ t:B and t is normal, then all subterms of t have a type that is a
subtype of B, or a subtype of some type in Γ.

• So there are only finitely many (normal) choices of A in the example above

Failure of the Subformula Property

The subformula property fails for disjunction and falsum:

[A] [A] [A] [A]

A∨A A∧A A∧A ⊥

A∧A A∧B

A A
• These derivations are normal:
• πi𝛿[s,x.<x,x>,y.<y,y>] and π1εz
• But A∧A not a subformula of A∨A or A, and A∧B not a subformula of ⊥ or A

The problem is the arbitrary ‘parasitic’ conclusion of ∨E and ⊥E

New Conversions for ⊥

⊥E followed by an elimination reduces to ⊥E:
• π1εA∧Bt ↦ εAt
• π2εA∧Bt ↦ εBt
• (εA→Bt)u ↦ εBt
• 𝛿C[εA∨Bt,x.u,y.v] ↦ εCt
• εAε⊥t ↦ εAt

In terms of functions:
• There is always exactly one (trivial) function from 0 to anything else

With these new conversions the subformula property holds
• The old properties need to be rechecked, but happily also still hold

New Conversions for ∨ - Example

Where ∨E is followed by an elimination, push the elimination up:

[A] [B] [A] [B]

A∨B C∧D C∧D to C∧D C∧D

C∧D A∨B C C

C C

These are collectively known as the commuting conversions.

Commuting Conversions for ∨

• π1𝛿[s,x.t,y.u] ↦ 𝛿[s,x.π1t,y.π1u]

• π2𝛿[s,x.t,y.u] ↦ 𝛿[s,x.π2t,y.π2u]

• (𝛿[s,x.t,y.u])v ↦ 𝛿[s,x.t v,y.u v]

• ε𝛿[s,x.t,y.u] ↦ 𝛿[s,x.εt,y.εu]

• 𝛿[𝛿[s,x.t,y.u],x’.t’,y’.u’]

↦ 𝛿[s,x.𝛿[t,x’.t’,y’.u’],𝛿[u,x’.t’,y’.u’]]

These are not all easy to read!
• But do give us the subformula property without sacrificing other properties

Checking our Counter-Examples

The counter-example to the subformula property for ⊥ resolves easily:

⊥

A∧B to ⊥

A A

i.e. π1εz ↦ εz

Checking our Counter-Examples

The counter-example for ∨:

[A] [A] [A] [A]

A∨A A∧A A∧A

A∧A

A

i.e. πi𝛿[s,x.<x,x>,y.<y,y>]

Checking our Counter-Examples

The counter-example for ∨:

[A] [A] [A] [A]

A∧A A∧A

A∨A A A

A

i.e. πi𝛿[s,x.<x,x>,y.<y,y>] ↦ 𝛿[s,x.πi<x,x>,y.πi<y,y>]

Checking our Counter-Examples

The counter-example for ∨:

A∨A [A] [A]

A

i.e. πi𝛿[s,x.<x,x>,y.<y,y>] ↦ 𝛿[s,x.πi<x,x>,y.πi<y,y>]

↦ 𝛿[s,x.x,y.y]

Conclusion

• There is an isomorphism between certain sorts of logic and certain
sorts of programs

• The connectives of propositional logic correspond to type-formers

• Hence the formulae of logic correspond to types

• Natural deduction proofs correspond to functional programs

• Proof Normalisation corresponds to Beta-Reduction
• Perhaps with commuting conversions, or even eta conversions

• The remainder of our time will be spent extending these key ideas

	Slide 1: Propositions and Types, Proofs and Programs Part IV: Curry-Howard
	Slide 2: The Strange Coincidence
	Slide 3: Return to BHK
	Slide 4: Some Aspects of Curry-Howard
	Slide 5: Lambda Calculus as Notation for Proofs
	Slide 6: Examples of Type Inhabitation
	Slide 7: Other Connectives: ∧ and ×
	Slide 8: Products and the Lambda Calculus
	Slide 9: Other Connectives: ∨ and +
	Slide 10: Other Connectives: ⊥ and 0
	Slide 11: Roundabout Proofs with Conjunction
	Slide 12: Roundabout Programs with Products
	Slide 13: Another Roundabout Proof with Conjunction
	Slide 14: Important Properties
	Slide 15: Important Properties for Products
	Slide 16: Roundabout Proofs with Implication
	Slide 17: Assumption Replacement as Substitution
	Slide 18: Subject Reduction
	Slide 19: Induction on Proof Rules
	Slide 20: Substitution Lemma: Base Cases
	Slide 21: Substitution Lemma: →E
	Slide 22: Strong Normalisation
	Slide 23: Tait’s Method
	Slide 24: Canonicity
	Slide 25: Canonicity, Generally
	Slide 26: Roundabout Proofs with Disjunction
	Slide 27: Beta Reduction Summarised
	Slide 28: Subformula Property
	Slide 29: Failure of the Subformula Property
	Slide 30: New Conversions for ⊥
	Slide 31: New Conversions for ∨ - Example
	Slide 32: Commuting Conversions for ∨
	Slide 33: Checking our Counter-Examples
	Slide 34: Checking our Counter-Examples
	Slide 35: Checking our Counter-Examples
	Slide 36: Checking our Counter-Examples
	Slide 37: Conclusion

