
LSS 2025: Computability and
Incompleteness
I. Models of Computation

Michael Norrish
michael.norrish@anu.edu.au

1 I. Models of Computation Michael Norrish

Course Outline

Five lectures:
1 Models of Computation. Turing Machines, Recursive Functions.
2 Computability Results. Halting Problem and more.
3 Logic and Computability. Undecidability of FOL.
4 Gödel’s First Incompleteness Theorem.

Representability, Indefinability of Truth.
5 Gödel’s Second Incompleteness Theorem.

Some (non-)implications.

Textbook: Logic and Computability, Boolos and Jeffrey.

2 I. Models of Computation Michael Norrish

Outline

1 Introduction

2 Turing Machines

3 Recursive Functions

4 Other Models
Lambda Calculus

3 I. Models of Computation Michael Norrish

Computation—What’s It Good For?

What can we do mechanically?

Is there a way to automatically solve interesting mathematical problems?

Is there a way to automatically solve interesting logical problems?

Alternatively: what logical/mathematical problems can we solve automatically?
▶ Which ones can’t we solve?

4 I. Models of Computation Michael Norrish

Wanted: Formal Definition of “Computer”

Desiderata:
▶ Simple. Simple models are easier to reason about.
▶ Plausible. We have to believe that the model plausibly captures what it is

to “compute”.
▶ Abstract. Not tied to unnecessarily concrete details.

5 I. Models of Computation Michael Norrish

Outline

1 Introduction

2 Turing Machines

3 Recursive Functions

4 Other Models
Lambda Calculus

6 I. Models of Computation Michael Norrish

Turing Machines

Turing’s definition of what it is to be a computer

Alan Turing
(1912–1954)

In the 1930s, a “computer” was a person who
performed (arithmetic) calculations.

Turing’s model drew inspiration from how people
calculate with pen-and-paper:
▶ they have an infinite (!) working space;
▶ they perceive and operate on small bounded parts of

that space.

7 I. Models of Computation Michael Norrish

Turing Machines, Informally

A Turing machine is a
▶ finite state machine (the “control”)
▶ operating on an infinite tape of “cells”

Turing machine tape-cells
▶ are either blank or filled with one of a finite set of symbols

A Turing machine state
▶ sees as input the “current” tape-cell,
▶ may

▶ alter the cell, or
▶ move to an adjacent tape-cell

▶ it also specifies the next state (based on the input)

8 I. Models of Computation Michael Norrish

Making Turing Machines Compute Things

Put the machine down on a tape that has been primed with an encoding of the
input.

If the machine stops and is pointing to a recognisable result on the tape, that’s
the answer.

Thus, the machine can fail in two ways:
▶ stops with bogus tape
▶ never stops

Turing machines compute partial functions.

9 I. Models of Computation Michael Norrish

Turing Machines and Numbers

We can work exclusively with one symbol, the “blob” (or 1).
(Remember we also have blanks (or 0) on the tape).

The number n is represented on the tape as n blobs.

TMs can compute (partial) functions N → N.

TM(n) = m when:
1 Put n blobs on tape.
2 Run TM, starting it pointing to left-most blob.
3 TM stops at leftmost position of m blobs.

(Handles 0 as input and output.)

10 I. Models of Computation Michael Norrish

Already, Uncomputability Rears Its Ugly Head

Turing machines are enumerable (finite controls!)

Functions N → N are uncountable.

Therefore, there must be functions that no Turing Machine can compute.

Surely it’s not reasonable to allow infinite programs. . .

11 I. Models of Computation Michael Norrish

So What Can Turing Machines Compute?

Numeric calculations: addition, subtraction, multiplication, pairing. . .
(example to follow)

Numeric tests: “is zero?”, “is even?”, “is prime?”. . .

Operations on other data types: encoding, decoding . . .

12 I. Models of Computation Michael Norrish

Addition in Seven States

1,R

0,R 1, 0

0, L0, 1

0, L

0, L

0,R

1, L

Arrow label x,A means
“if you see an x, do action A (and follow arrow to next state)”

13 I. Models of Computation Michael Norrish

Programming Turing Machines

Turing Machines are the ultimate in low-level computing devices.

Programming them can be appealing as a puzzle.

But it’s hard to develop much modularity.

Somewhat easier if you have a simulator to play with.

Cue demo. . .

Credit to http://turingmachinesimulator.com
and Martin Ugarte.

14 I. Models of Computation Michael Norrish

http://turingmachinesimulator.com

Programming Turing Machines

Turing Machines are the ultimate in low-level computing devices.

Programming them can be appealing as a puzzle.

But it’s hard to develop much modularity.

Somewhat easier if you have a simulator to play with.

Cue demo. . .

Credit to http://turingmachinesimulator.com
and Martin Ugarte.

14 I. Models of Computation Michael Norrish

http://turingmachinesimulator.com

Deciding Sets with Turing Machines

Turing Machines can implement “tests” on arguments.(
Put n blobs on tape, machine whirs away, leaves
either one blob (“yes”) or no blobs behind (“no”).

)

This can be seen as the action of deciding set membership.

A set is decidable if a machine exists that always correctly says “yes” or “no” of
possible elements.

E.g., the set of prime numbers is decidable.

15 I. Models of Computation Michael Norrish

Unary Functions as Enumerations

A function f of type N → N can be seen as an enumeration.

The enumerated set is the range of the function.
Can insist (or not) that enumeration gives values to all pre-
ceding values: if f (n) is defined, then so too must be f (m) for
all m < n.
Can insist (or not), that there are no repeats (that is, f is in-
jective).


Every decidable set can be enumerated:

Given input n, run decision machine on n.
If it says “yes”, return n; otherwise go into infinite loop.

16 I. Models of Computation Michael Norrish

Enumerations Give Semi-Decision Procedures

A semi-decision procedure for S is a machine that will correctly say “yes” of an
input n iff n ∈ S.

If we have an enumeration machine E, and want to see if n ∈ S,
run E on successive values (0, 1 . . .) until we find an
i such that E(i) = n.

(Fast and Loose Alert: I am assuming E is a “strong” enumerator that has no
gaps in its domain.)

17 I. Models of Computation Michael Norrish

Semi-Decision Procedures Give Enumerations

This should be familiar:

Given input n, run decision machine on n.
If it says “yes”, return n; otherwise go into infinite loop.

The difference is that “otherwise” now includes the failure of the machine to
terminate.

(Fast and Loose Alert: I am producing an enumeration that probably does have
gaps in its domain.)

18 I. Models of Computation Michael Norrish

Gappy Enumerations Can Be Made Non-Gappy

Say E(n) is undefined.

Want to be able to scan ahead for an m > n where E(m) is OK.
(If there is none such, it’s OK for us to loop.)

But How?
Can’t just run E(n + 1) and wait for its answer.

Need to be able to run a set of machines in parallel for fixed
number of steps.

This is called dovetailing.

19 I. Models of Computation Michael Norrish

Gappy Enumerations Can Be Made Non-Gappy

Say E(n) is undefined.

Want to be able to scan ahead for an m > n where E(m) is OK.
(If there is none such, it’s OK for us to loop.)

But How?
Can’t just run E(n + 1) and wait for its answer.

Need to be able to run a set of machines in parallel for fixed
number of steps.

This is called dovetailing.

19 I. Models of Computation Michael Norrish

The Universal Machines

There exists a universal machine U that when given as input (i, n) can simulate
the behaviour of machine i on input n.

That is, if φi(n) terminates with output x, so too does U(i, n).
If φi(n) loops, so too does U(i, n).

There also exists a stepping function that takes a machine state and runs it for
a specified number of steps.

(These facts are both extremely cool and extremely . . . obvious.)

One proof is by construction. . .

20 I. Models of Computation Michael Norrish

Is There Anything These Machines Can’t Do?

Church’s Thesis:
Turing Machines can compute anything that any reasonable
model of computation can compute.

No proof, but true for all models devised so far.

21 I. Models of Computation Michael Norrish

Outline

1 Introduction

2 Turing Machines

3 Recursive Functions

4 Other Models
Lambda Calculus

22 I. Models of Computation Michael Norrish

And Now For Something Completely Different

Turing Machines are so concrete!

Recursive Functions give us a way to capture computable functions much more
mathematically.

Basic Method:
▶ Construct a family of functions all of which are “obviously OK”
▶ Provide methods for making new functions from ones already “in the

family”.

23 I. Models of Computation Michael Norrish

I. Primitive Recursive Functions
Functions are generally of type (N× N× · · · × N) → N

Base cases:
▶ The zero function: z(n) = 0
▶ The successor function: s(n) = n + 1
▶ Projection functions: pi,n(x1, . . . , xn) = xi

Building new from old:
▶ Composition: if each gi takes n arguments, and f takes m, then

f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is primitive recursive.

Write as Cn[f , g1, . . . , gm] (it takes n arguments)

24 I. Models of Computation Michael Norrish

Can Already Define Some Good Stuff

Constant functions:

Three = Cn[s,Cn[s,Cn[s, z]]]

Three(x) = s(s(s(z(x))))
= 3

Adding a constant:

AddTwo = Cn[s, s]

AddTwo(x) = s(s(x))

None of these functions examine their arguments.

Can Already Define Some Good Stuff

Constant functions:

Three = Cn[s,Cn[s,Cn[s, z]]]

Three(x) = s(s(s(z(x))))
= 3

Adding a constant:

AddTwo = Cn[s, s]

AddTwo(x) = s(s(x))

None of these functions examine their arguments.

(Primitive) Recursion Makes It Even Better

If g (the “base case”) takes n arguments,

and h (the “recursive case”) takes n + 2 arguments,

then Pr[g, h] is the function f of n + 1 arguments such that

f (x1, . . . , xn, 0) = g(x1, . . . , xn)

f (x1, . . . , xn,m + 1) = h(x1, . . . , xn,m, f (x1, . . . , xn,m))

Allow n = 0, in which case g can just be a number.

26 I. Models of Computation Michael Norrish

Simple Arithmetic is Primitive Recursive

Addition (Plus) is Pr[p1,1,Cn[s, p3,3]]:

Pr[p1,1,Cn[s, p3,3]](x, 0) = p1,1(x)
= x

Pr[p1,1,Cn[s, p3,3]](x, y + 1) = Cn[s, p3,3](x, y,Plus(x, y))
= s(p3,3(x, y,Plus(x, y)))
= s(Plus(x, y))

Multiplication (Mult) is Pr[z,Cn[Plus, p1,3, p3,3]]:

Mult(x, y + 1) = Cn[Plus, p1,3, p3,3](x, y,Mult(x, y))
= Plus(p1,3(x, y,Mult(x, y)), p3,3(x, y,Mult(x, y)))
= Plus(x,Mult(x, y))

Simple Arithmetic is Primitive Recursive

Addition (Plus) is Pr[p1,1,Cn[s, p3,3]]:

Pr[p1,1,Cn[s, p3,3]](x, 0) = p1,1(x)
= x

Pr[p1,1,Cn[s, p3,3]](x, y + 1) = Cn[s, p3,3](x, y,Plus(x, y))
= s(p3,3(x, y,Plus(x, y)))
= s(Plus(x, y))

Multiplication (Mult) is Pr[z,Cn[Plus, p1,3, p3,3]]:

Mult(x, y + 1) = Cn[Plus, p1,3, p3,3](x, y,Mult(x, y))
= Plus(p1,3(x, y,Mult(x, y)), p3,3(x, y,Mult(x, y)))
= Plus(x,Mult(x, y))

Some Properties of Primitive Recursive Functions

Enumerable: Each prim. rec. function is captured by a finite string.

Total: Only interesting case to consider is recursion; all such must be total
by induction on the argument that is “recursed”.

28 I. Models of Computation Michael Norrish

Primitive Recursion Does Not Capture Computability

Consider the famous Ackermann function:

A(0,m) = m + 1
A(n + 1, 0) = A(n, 1)

A(n + 1,m + 1) = A(n,A(n + 1,m))

▶ Must be computable
▶ Is total (well-founded induction on lexicographic ordering of arguments)
▶ Grows very quickly

In fact, for every prim. rec. function f , there is a J such that, for all possible
arguments x1, . . . , xk

f (x1, . . . , xk) < A(J, Σ xi)

29 I. Models of Computation Michael Norrish

What Are We Missing?

Ackermann’s function cannot be captured by the primitive recursive functions.

What can we add so that it can be computed?

30 I. Models of Computation Michael Norrish

Introducing the Recursive Functions

Keep the formation rules for primitive recursive functions.

Add the following:
If f is a recursive function of n + 1 arguments,
then Mn[f] is a function of n arguments (x1, . . . , xn) that
returns the least m such that f (m, x1, . . . , xn) = 0.

Suddenly we’re no longer in the land of total functions!

Computationally, can view Mn[f] as a potentially unbounded search.

31 I. Models of Computation Michael Norrish

Is This Really Enough?

It may not be obvious that adding Mn is sufficient.
▶ Just adding something that may not terminate is not a clear improvement.

On the other hand, it should be obvious that Mn is not implementable with
primitive recursion.

Exercise: Show you can implement Ackermann’s function by providing a
recursive function to calculate it.

32 I. Models of Computation Michael Norrish

Recursive Functions Are Equivalent to Turing
Machines

Each model can emulate the other.

Turing Machines can implement the recursive functions.
▶ I hope this is obvious

The recursive functions can implement Turing Machines.
▶ Perhaps not so obvious; in the next lecture!

33 I. Models of Computation Michael Norrish

Outline

1 Introduction

2 Turing Machines

3 Recursive Functions

4 Other Models
Lambda Calculus

34 I. Models of Computation Michael Norrish

Register Machines

Called abacus machines in Boolos and Jeffery.

Finite state machines with access to arbitrary number of “registers” (fixed per
program).

Registers can contain arbitrarily big numbers.

Programs can add one, subtract one and branch.

Slightly more realistic “hardware”.

35 I. Models of Computation Michael Norrish

The Lambda Calculus

The world’s simplest programming language:

M ::= v | M1 M2 | (λv.M)

Behaviour captured by one rule:

(λv.M)N →β M[v := N]

Apply this rule (β-reduction) wherever you can within a term;
rename bound variables to avoid capture.

36 I. Models of Computation Michael Norrish

The Lambda Calculus Does It All

Can represent numbers.

Can go into infinite loops:

(λx. x x)(λx. x x) →β (λx. x x)(λx. x x)

Can implement arbitrary recursion: the famous Y combinator.

Very expressive: much the easiest model to show capable of emulating the
others.

37 I. Models of Computation Michael Norrish

Summary

▶ Turing Machines. The “hardware model of computation”.

Also, important notions:
▶ Decidability
▶ Enumerability (= semi-decidability)

▶ Recursive functions. The “mathematician’s model of computation”.
▶ Starting with primitive recursive functions.

▶ The Lambda Calculus (briefly)

38 I. Models of Computation Michael Norrish

	Introduction
	Turing Machines
	Recursive Functions
	Other Models
	Lambda Calculus

