LSS 2025: Computability and

Incompleteness
III. Logic and (In)Computability

Michael Norrish

michael.norrish@anu.edu.au

+| Australian
==/ National

N~

=~ University

11l Logic and (In)Computability

| Michael Norrish

7

Outline

@ Introduction
@® Undecidability of First Order Logic
@® Godel Numbering

@O The Logic Q: Robinson Arithmetic

2 I1l. Logic and (In)Computability

Michael Norrish

7

Last Time. ..

Results in Computability:

» Turing Machines and Recursive Functions coincide.
» Alternatively, each can simulate the other

> It's impossible to tell if a computation will finish (Halting Problem)

» It's impossible to determine if a machine/function has any particular
extensional property (Rice’s Theorem)

» Recursive Enumerability is the limit of computability. . .
> but it’'s possible to say things about degrees of hardness beyond that.

lll. Logic and (In)Computability Michael Norrish

*S?) ‘

Logic and Computability

Logic is not just a tool for human use.

Automating logical reasoning is a very productive activity:
» software verification

» hardware verification
» mechanised mathematics

But automation happens on computers, and perhaps
computer logic is necessarily limited. . .

lll. Logic and (In)Computability

Michael Norrish

Outline

@® Undecidability of First Order Logic

7

5 I1l. Logic and (In)Computability Michael Norrish

First Order Logic

Syntax:

>
>
>

>
>

Term variables: x, y, z, ...

Function Symbols (make terms from other terms): f, g, 1, ...

Predicate Symbols (make formulas of terms): P, O, R, ...
» Equality (fixed binary predicate): 1 =1,

Propositional Connectives (make formulas of formulas): /A, —, ...

Quantifiers (over/binding term variables): Vx, Jy, ...

Function and predicate symbols have arities.
The arity of a symbol is the number of arguments it can take.
Allowing arities of zero is OK.

lll. Logic and (In)Computability

Michael Norrish

)S?) ‘

First Order Logic

Semantics:

» A closed formula is interpreted with respect to an interpretation that
> specifies a domain D

» maps function symbols of arity » into functions D" — D
> maps predicate symbols of arity m into predicates D" — B

» Truth value of the closed formula is given recursively over its structure.
For example:

> (b A1) istrueiff Z(d) is true and Z(1)) is true.
> T(Vx.d) is true if Z(¢) is true of all elements d € D. (Sloppy alert!)

Write =) if @ is true in all interpretations (“valid”).

)&))4‘

Ill. Logic and (In)Computability Michael Norrish

First Order Logic

FOL has Proof Systems:

» Axiomatic (“Hilbert”) System
» Natural Deduction

» Sequent Calculus
> ...
A proof system defines derivability/provability relation

Soundness and completeness (proved in another course!)
if @ then = O

if =® then O

lll. Logic and (In)Computability

Michael Norrish

Derivable is Enumerable

Easily seen from axiomatic systems:
» Can enumerate all possible formulas.

» Can enumerate all possible instantiations of the axiom schemes.

» Can enumerate all possible applications of inference rules to theorems.

Ill. Logic and (In)Computability Michael Norrish

’&» > ‘

Thus, There is a Semi-Decision Procedure for Validity

| wish to determine if @ is valid.

© Run my favourite theorem-enumerator.

® Wait for @ to appear ...
® If it does, say “Yes!”

The “Yes!” result means + ©, and soundness means = .

Conversely, if @ is valid, then = ® and completeness means = @, and my
enumerator will get to © eventually.

& —

Ill. Logic and (In)Computability Michael Norrish

Not a Decision Procedure!

| want to decide validity of @.

How about:

© Run my favourite theorem-enumerator

® If ©® appears, say “Yes!”
® If ~® appears, say “No!”

Why doesn’t this work?

Ill. Logic and (In)Computability

Michael Norrish

.

Not a Decision Procedure! (continued)

[Enumerating theorems, and waiting for © or ~®@ - - -]
Example: Vx. R(x, x) is not valid.

» R might be interpreted by something that is not reflexive

But: —=(Vx. R(x,x)) (equivalent to Jx. —R(x, x)) is not valid either.
» R might be interpreted by something that is reflexive.

In general, the mistake was to imagine that (£ © implied = —®.

(Validity (=) has a hidden universal over interpretations inside!)

Ill. Logic and (In)Computability

)&))4‘

Michael Norrish

Validity in First Order Logic is Not Decidable

First shown by Church.
» Turing’s PhD supervisor.
» Inventor of the A-calculus.
» Author of Church’s Thesis.

Alonzo Church Valid sentences are recursively enumerable.
(1903-1995)

Proof that valid sentences are not recursive is by reduction to the Halting
Problem.

Ill. Logic and (In)Computability

=

Michael Norrish

Reduction to the Halting Problem

[As with Rice’s Theorem.]

Proof by contradiction.

Assume we can solve our problem.

Show that this results in us being able to solve the Halting Problem too.

Conclude that we can’t solve the original problem.

Ill. Logic and (In)Computability

=

Michael Norrish

Reduction to the Halting Problem for FOL Validity

Assume we can decide = @ for all ©

» We are given machine M with input 7.

» We will determine if it halts or not.

Trick is to encode “do you halt?” in first order logic.

I1l. Logic and (In)Computability

Michael Norrish

..

Encoding Turing Machine Computation in FOL

[Multiple approaches possible. This one is from B&J.]

Have two function symbols:

» (0 — function symbol of arity zero (stands for 0)

» s — function symbol of arity one (stands for successor)
Tape is indexed with integers (infinite in both directions).

Have one binary predicate per machine-state (Q;),

and one binary predicate per tape-symbol (S,),

and binary predicate <.
» Q,(t,p) — at time ¢, machine is in state ; and position p on the tape
» S;(t,p) — at time 1, tape holds symbol i at position p
» | < j—iisless than

Ill. Logic and (In)Computability Michael Norrish

Encoding the Initial State

[Assume initial machine state is 0 and initial input is n.]
At time r = 0, machine is initially in state 0 at tape position 0:

QO(()) 0)

At time 1 = 0, tape positions 0...n — 1 are filled with symbol 1:

A\ 5i10,5(0))

i€0...n—1

All other tape positions are filled with symbol 0:

Vp-(A p%q> = So(0,p)

q€0...n—1

Ill. Logic and (In)Computability

Michael Norrish

Encoding the Turing Machine

050
020

\V/IPQ° Qi(t>p)/\SO(t»p) =
Q;(s(1), s(p)) N (So(t,q) = Sols(t), q)) N
(Sl(t) Q) = Sl(s(t)>q))

Vtpgq. Qi(t,p) N\ So(t,p) =
Q;(s(1),p) N Si(s(t),p) N
(g #p N\ Solt,q) = Sol(s(t),q)) N
(g #p N\ Silt,q) = Si(s(1),q))

I1l. Logic and (In)Computability

Michael Norrish

Encoding the Machine: Moving Left and Integers

With just a successor function, how do we talk about going leftwards, even unto
negative positions?

0,L Vipgq. Qi(t,s(p)) N\ So(t,s(p)) =
Q;(s(t),p) /\ (So(t,q) = So(s(1),q)) /\
(S1(2,q) = Si(s(2), 9))

Still need to assert that every number is the unique successor of another:
Vn. dm. (n = s(m)) A\Vp. (n =s(p)) = (m =p)
And properties of <:
Vxyz. (x<yAy<z=x<z)A—=(x<x)A\x<s(x)

=

Ill. Logic and (In)Computability Michael Norrish

Encoding the Question

Have machine description, and some super-minimalist arithmetic.
Call all this A.
Add H:
\/ 3tp.(Qilt,p) ASi(t,p))
(iyj)eH

where # is set of state-symbol pairs where machine specifies no action.
Halting Question: A = H

20 Ill. Logic and (In)Computability

=

Michael Norrish

Implication 1

If = A = H, then it is true for all interpretations
of the symbols 0;, S;, <, 0 and s.

In particular, it is true for the “machine interpretation”
we have been using/assuming.

So the given Turing Machine does halt when given the specified input.

21

Ill. Logic and (In)Computability Michael Norrish

*S?) ‘

Implication 2
This is harder.

If the Turing Machine does halt, we need to show that = A = H.
» j.e., the statement is true in all interpretations.

Thanks to completeness, suffices to show - A = H

If the Turing Machine halts, it does so in some number of steps, 7.

Will prove our result by induction on step-count.

22

Ill. Logic and (In)Computability Michael Norrish

*S@) ‘

Descriptions of Moments of Time

A description of time 7 is
» a ground formula describing the machine and state tape at time ¢
» machine state captured by O;(z, p)
» tape state captured by
> ApepSilt,p) (for various S;); and
> Vgq.q ¢ P = So(t,q)

Set P will be finite set of positions touched by machine so far
(including p).

Negative Tape Positions: P may include negative numbers.

If we want to write, for example, Q;(z,—n), we do it by writing:

(Fm. 0 = 5" (m) N\ Q;(t,m))

23

Ill. Logic and (In)Computability Michael Norrish

)&))4‘

24

Description of the End of the Run

If the machine halts in n steps at position p on the tape, in state ¢ and looking at
symbol i, then a correct description will include:

Qq(n)p) AS!(”)I’)
And this will imply one of the disjuncts of H.

Ill. Logic and (In)Computability

..

Michael Norrish

The Induction

For all times r < n, machine description A implies a correct description of time .

» Implication must be in all possible interpretations.
Proof is by induction on r.

Base case is that we have a correct description of initial state
(atr =0).

» Trivially true as A includes it by construction.

25

Ill. Logic and (In)Computability Michael Norrish

Induction’s Step-Case

Inductive Hypothesis: Have a correct description of time 1.
(Alternatively, A implies that correct description.)
» 1+ 1 < n, so machine has not halted at time .
Need to show that A implies a correct description of the machine
attime r + 1.

The machine at time 7 is in state ¢, at position p and with tape state captured by
> A,epSilt,p) (for various S;); and
> Yq.q9 & P = So(t,q)

Ill. Logic and (In)Computability

)&))4‘

Michael Norrish

Step-Case: Write Action

Have: O;(t,p) /\ Sy(t, p) in description of time ¢
Have this in A:

0,1 @ Vipq. Qi(t,p) N\ So(t,p) =

Q;(s(1), p) A Si(s(t),p) N

(g #p A\ Soltyq) = Sols(t),q)) N
(g #p A\Si(t,q) = S:1(s(t),q))

First two conjuncts of conclusion give us correct description of machine-state
and symbol at machine-position

Rest of required description is of rest of tape

Ill. Logic and (In)Computability

] —

Michael Norrish

Step-Case: Write Action (continued)

Have: O;(t,p) /\ Sy(t, p) in description of time 1.
Also have: S;(z,p’), for various j and p’.

From A, have: Vq. (¢ #p/\Solt,q) = So(s(1),q)) /\
(g #pASi(t,q) = Si(s(1),q))

Imagine (for example) p = 2, ¢ = —3, and S(z,).
» Handling of negative numbers means we actually have
3q'. 0 = s(s(s(g"))) N Si(t,4")
> Want: 3¢". 0 = s(s(s(g"))) A Si(s(2),q")
» Suffices: 0 = s(s(s(¢")))) = ¢’ # s(s(0))
» Follows from properties of <.

28

I1l. Logic and (In)Computability

Michael Norrish

.

Step-Case: Head Movement

Have: O;(t,p) /\ Sy(t, p) in description of time r.
Have this in A:

0,L Vipq. Qi(t,s(p)) A Solt,s(p)) =
@ Qj(s(t)>p)/\(SO(Z)Q) :>SO(S(I)>CI))/\
(S1(2,q) = Si(s(2),q))
By first arithmetic assumption, the actual p is the successor of some py;
will instantiate p in movement assumption above with p,.

Contents of tape are easy, except perhaps for case when move has take
machine into hitherto unvisited part of tape.

29

Ill. Logic and (In)Computability Michael Norrish

)&))4‘

Visiting New Parts of Tape

Description at time 7 says

Vg.q #p1 /N /NG F# pa = Solt,q)
(where p, values are visited positions to date).

Want to establish Sy(s(z), po) for new, concrete p, value.
Movement assumption has Vq. Sy(t,q) = So(s(1),q).

So just have to establish py = p; /\ -+ A po # pn

As before, arithmetic assumptions will get us there.

30 Ill. Logic and (In)Computability

Michael Norrish

)&))4‘

Outline

@® Godel Numbering

[7

= —

Michael Norrish

31 I1l. Logic and (In)Computability

Enumerability Inverted

Earlier claimed that “derivable is enumerable”, and
“can enumerate all possible formulas”.

If there is an onto function N — «, then there must be an injective function
o — N.

So, we can convert formulas into natural numbers.
» In fact there are infinitely many ways of doing this.

32

Ill. Logic and (In)Computability Michael Norrish

33

Manipulating Everything Numerically

The point of turning formulas into numbers is to allow numbers to “stand” for
formulas.

» A system that only knows about numbers can still then have “Formula
Manipulating Power”

But “manipulation” means doing stuff to formulas, not just having them hang
around.
Manipulation means (for example):
» building new formulas from old ones
» doing instantiation of variables

» determining the type of a formula
» pulling formulas apart

Ill. Logic and (In)Computability

Michael Norrish

34

Arithmetisation

Choose our Godel Numbering so as to make it possible

(i.e., computable!) to define formula manipulations as arithmetic functions.
We thereby provide an arithmetisation of syntax.

Computable functions will be able to manipulate more than just numbers.
» even though all they’re doing is manipulating numbers
» (compare: modern computers as bit-twiddlers)

Ill. Logic and (In)Computability

)S?) ‘

Michael Norrish

Outline

@O The Logic Q: Robinson Arithmetic

35 I1l. Logic and (In)Computability

Michael Norrish

36

A Change of Scene: Robinson Arithmetic (Q)

A first order logic with

» a fixed “non-logical language” (0, +, -,)

» a fixed intended interpretation (arithmetic)
> a fixed set of simple axioms

With arithmetic, the really interesting incompleteness results arise.

The logic O is minimalist: the interesting incompleteness results about it will
apply to all stronger logics too.

Ill. Logic and (In)Computability

)&))4‘

Michael Norrish

Q’s Axioms

Seven Axioms:
> Vxy.s(x) =s(y) = x=y

> Vx. 0 # s(x)

> Vx.x #£0= dy. x =s(y)
> Vx.x+0=x

> Vxy. x+s(y) =s(x+y)
> Vx.x-0=0

> Vxy.x-s(y)=(x-y)+x
Interpretation: arithmetic over the natural numbers.

As axioms are true in the given interpretation, so too are all of their
consequences (by soundness of FOL).

=

Ill. Logic and (In)Computability Michael Norrish

What O Is Not

Strong: can’t even prove that addition is commutative.

Peano Arithmetic: PA includes the axiom (scheme) for natural number

induction.

» Induction allows the proof of all sorts of nice properties

38

Ill. Logic and (In)Computability

Michael Norrish

)&))4‘

Summary

First Order Logic:
» Sound & complete, with computable rules of inference.
» Thus: recursively enumerable (semi-decidable).
» Expressive enough to capture behaviour of a Turing Machine.
» Thus: undecidable.
Godel Numbering:
» Can convert formulas into numbers

» Can (computably) perform formula operations within arithmetic
The Logic Q

» A basis for incompleteness results to come.

39 Ill. Logic and (In)Computability

=

Michael Norrish

	Introduction
	Undecidability of First Order Logic
	Gödel Numbering
	The Logic Q: Robinson Arithmetic

