
LSS 2025: Computability and
Incompleteness
V. Provability Predicates
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2 V. Gödel II Michael Norrish



Last Time. . .

Representability
▶ All recursive functions are representable in extensions of Q

Arithmetic Cannot be Captured
▶ The diagonalisation function is computable
▶ So any candidate “theorem-hood” notion can be turned against itself

▶ “I am true iff I am not a theorem”
▶ Truth is not definable in arithmetic (Tarski)
▶ Arithmetic is not axiomatisable (Gödel)
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Peano Arithmetic

Called, variously: PA (Johnstone), Z (B&J), S (Mendelson).

Take Q, and add induction:
▶ If P is a formula with x free, then the universal closure of

P(0)∧ (∀m. P(m) ⇒ P(s(m))) ⇒ (∀n. P(m))

is an axiom.
(Where P(a) means P with x replaced by a.)

The result is a formal system with an infinite number of axioms.
▶ However, the axioms are still decidable.
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Proofs are Computably Checkable

A proof in a formal system is a sequence of formulas such that
every formula in the sequence is
▶ an instance of an axiom; or
▶ is the result of applying a rule of inference to one or more formulas earlier

in the sequence

For human consumption, we usually indicate a non-axiom’s forebears explicitly.

But we could just check all possible earlier formulas.
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Proofs are Arithmetisable
Already know how to map
▶ formulas into numbers
▶ lists of numbers into numbers.

Can therefore turn a proof into a number.

Checking this number is really a proof is computable, hence representable in
extensions of Q.

Given formula A, can also check that the last formula in a proof is equal to A.

Thus
Proof (p, ⌜A⌝) = p is a proof of A

is definable.
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A Provability Predicate

Let Provable(n) def
= (∃p. Proof (p, n))

Write □A for Provable(⌜A⌝).

Important Properties of Provability:
▶ if ⊢ A then ⊢ □A
▶ ⊢ □(A ⇒ B) ⇒ (□A ⇒ □B)
▶ ⊢ □A ⇒ □(□A)

In Z the above can all be proved; as can
▶ if ⊢Z □A then ⊢Z A
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Provability Does Not Define Theorem-Hood

Last time, we proved the indefinability of theorem-hood.

Definability required

⊢T Thm(nt(n)) iff ⊢T gn−1(n) (1)
⊢T ¬Thm(nt(n)) iff ̸⊢T gn−1(n) (2)

Provability (□) only gives us (1).

So what happens if we replay the proof of indefinability with □?
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The Gödel Sentence
We have a G such that ⊢Z G ⇐⇒ ¬□G (1)
▶ This is the Gödel sentence for our theory.

We also know that ⊢Z G iff ⊢Z □G (2)

If Z is consistent, then:

G is not a theorem of Z.
▶ If it were, then ⊢Z G. So, ⊢Z □G by (2). But also, ⊢Z ¬□G by (1),

making Z inconsistent.

¬G is not a theorem of Z.
▶ If it were, then ⊢Z □G by (1). Then ⊢Z G by (2).

Again making Z inconsistent.

10 V. Gödel II Michael Norrish



Gödel’s First Incompleteness Theorem Concretely

As long as our logic T is strong enough to give us

⊢T G iff ⊢T □G

we know
If T is consistent, then ̸⊢T G and ̸⊢T ¬G

In other words, G demonstrates T ’s incompleteness.

Moreover, we do know that ⊢T G ⇐⇒ ¬□G
▶ This says that G is true iff G is not provable.
▶ Having just proved G’s unprovability, we can conclude G is true.
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Henkin’s Formula

On one hand, G says that G isn’t derivable.

Diagonalisation also gives us H such that

⊢T H ⇐⇒ □H

or
H says that H is derivable

But is H true?
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Löb’s Theorem

By far the weirdest result of the course:
If ⊢T □A ⇒ A, then ⊢T A

Can also write:
□(□A ⇒ A) ⇒ □A

which is the the axiom for modal provability logic.

(Why does provability “correspond” to a binary relation that is transitive and
well-founded?)
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Proof of Löb’s Theorem
Theorem: if ⊢T □A ⇒ A, then ⊢T A

Diagonalise formula □x ⇒ A, giving L such that

1 ⊢T L ⇐⇒ (□L ⇒ A)
2 ⊢T L ⇒ (□L ⇒ A) (bicond elimination)
3 ⊢T □(L ⇒ (□L ⇒ A)) (PP1)
4 ⊢T □L ⇒ □(□L ⇒ A) (PP2)
5 ⊢T □L ⇒ (□□L ⇒ □A) (PP2 on right)
6 ⊢T □L ⇒ □A (PP3 eliminates □□L)
7 ⊢T □L ⇒ A (□A ⇒ A by assumption)
8 ⊢T L (7,1)
9 ⊢T □L (PP1)

10 ⊢T A (7,9)
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Löb’s Theorem Proves the Henkin Sentence

Henkin sentence is ⊢T H ⇐⇒ □H

If that’s provable, so too is ⊢T □H ⇒ H.

By Löb’s Theorem: ⊢T H

So the sentence that “says of itself that it is provable”, is indeed true.
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Provability Gives us Arithmetisation of Consistency

Write ⊥ for 0 ̸= 0. (Recall that ⊢ ⊥ ⇒ A for any A.)

Write ConT for ¬□⊥ (“false” is not provable).

▶ Consistency was “actually” simultaneous derivation of A and ¬A for some A
▶ But the two are equivalent.
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Consistency is Unprovable (Sketchy Version)

Want to show
⊢T ConT ⇒ G

Then, ConT can’t be derivable, because if it were, G would be too.

We know that G “means” ‘G is not derivable’.

Gödel’s First Incompleteness Theorem says
If T is consistent, then G is not derivable.

But that’s just what we want to prove!
▶ Just have to be able to carry out proof of Gödel’s First Incompleteness

Theorem in T Done

18 V. Gödel II Michael Norrish



Consistency is Unprovable (Löb Version)

Suppose we did have ⊢T ConT , or ⊢T ¬□⊥.

Then get: ⊢T □⊥ ⇒ ⊥
▶ by propositional principle of proving anything from a false assumption

Löb’s Theorem then says ⊢T ⊥ (false is derivable after all!)

A contradiction, so consistency is not provable. Done
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Consistency is Unprovable (non-Löb PP Version)

Recall that G demonstrates T ’s incompleteness (is unprovable).

Now want to argue that if T extends Z, then

⊢T ConT ⇒ G

(if ConT were provable, G would be too).

▶ Have (provability property): ⊢T □G ⇒ □□G
▶ Thus (diagonal property of G): ⊢T □G ⇒ □¬G

▶ “if I can prove G, then I can also prove ¬G”
▶ So, ⊢T □G ⇒ □⊥
▶ Diagonal property of G: ⊢T ¬G ⇒ □⊥
▶ Contrapositively: ⊢T ¬□⊥ ⇒ G Done
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Gödel’s Second Incompleteness Theorem

If T is at least as powerful as Z, then it cannot simultaneously:
▶ Be consistent
▶ Prove its own consistency
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Would a Consistency Proof of T in T Be Convincing?

Imagine we are doubtful about T .

A consistency proof would be reassuring.

But if that proof is carried out in T too,
how does that assuage our doubts?

▶ If it could be done in a small part of T , maybe. . .
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Consistency is Possible by Other Means

Peano Arithmetic was proved consistent by Gentzen.
(Q’s consistency follows too.)

He didn’t do it in PA, but used a different logical system.

Nor was his system stronger than PA; just different.
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Yikes, An Infinite Regress Awaits!

If we can’t prove our interesting systems consistent except by recourse to other
systems, this is a neverending process!

So what?
▶ We have the same problem whenever we set up our logical systems; we

have to start with some set of axioms.
▶ “We don’t need Gödel to tell us that we cannot accept a proof in one formal

system only on the basis of proof in another formal system.”—Franzén
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Note

Consistent systems don’t have to prove true theorems.
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My Own Self-Doubt-Casting Sentence

If anyone says

“X because of Gödel’s Theorem”

or

“Thanks to Gödel’s Theorem, X”

or variants of the same. . .

. . . they’re talking nonsense.

(To a first approximation.)
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Examples from Franzén

▶ Religious people claim that all answers are to be found in the Bible or in whatever
text they use. That means the Bible is a complete system, so Gödel seems to
indicate it cannot be true. And the same may be said of any religion which claims,
as they all do, a final set of answers.

▶ As Gödel demonstrated, all consistent formal systems are incomplete, and all
complete formal systems are inconsistent. The U.S. Constitution is a formal
system, after a fashion. The Founders made the choice of incompleteness over
inconsistency, and the Judicial Branch exists to close that gap of incompleteness.

▶ Gödel demonstrated that any axiomatic system must be either incomplete or
inconsistent, and inasmuch as Ayn Rand’s philosophy of Objectivism claims to be
a system of axioms and propositions, one of these two conditions must apply.

▶ Nonstandard models and Gödel’s incompleteness theorem point the way to God’s
freedom to change both the structure of knowing and the objects known.



Mathematics Floundering in a Relativistic Sea?

We can extend T by adding either G or ¬G as a new axiom.

The resulting theory will be consistent if T was.
▶ How do we pick which one to take?

For Z (PA), we know that G ⇐⇒ ConZ .
▶ We also know ConZ (Gentzen), so we should pick Z + G.

For more complicated systems (e.g., ZFC set theory),
“ordinary mathematics” does not necessarily know their consistency.
▶ but systems ZFC + ¬ConZFC are uninteresting
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Gödel and AI
Lucas:

However complicated a machine we construct, it will, if it is a machine, corre-
spond to a formal system, which in turn will be liable to the Gödel procedure
for finding a formula unprovable in that system. This formula the machine will
be unable to produce as true, although a mind can see that it is true.

False.
▶ The Gödel formula is equivalent to the consistency of the system; it is not

true in general.
▶ The “human mind” is not known to have any special ability to determine the

consistency of arbitrary formal systems.

Also, see Franzén for more on Penrose’s various arguments.
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Summary

Provability Predicates
▶ Logical theories as strong as Z can capture the notion of provability.
▶ Modal axioms must characterise the putative modality (□)
▶ Löb: if ⊢T □A ⇒ A, then ⊢T A

Gödel’s Second Incompleteness Theorem
▶ A system as strong as Z cannot both be consistent and prove its own

consistency.

Be Careful Out There

31 V. Gödel II Michael Norrish



Course Summary

Computability
▶ Turing Machines and Recursive Functions are equivalent.

▶ No extant computational model is more powerful
▶ Uncomputable problems exist (Halting Problem, notably)

Logic and Incompleteness
▶ Validity in FOL is undecidable (by reduction to Halting Problem)
▶ Logics with minimal arithmetic can represent computable functions.
▶ By diagonalisation of formulas (a computable procedure):

▶ arithmetic truth is undecidable;
▶ no theory can be all three of consistent, complete, axiomatisable

▶ No theory extending Z can prove its own consistency
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