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Game Playing AI





Origins

Schachtürke (Chess Turk)
1770

El Ajedrecista (The Chess Player)
1912

Plankalkül (Plan Calculus)
1941



Early History of AI

John von Neumann John McCarthy Arthur Samuel



Games

A game consists of a set of two or more players, a set of moves for the 
players, and a specification of payoffs (outcomes) for each combination 
of strategies.

Many different types of games:
• two-person zero-sum

• multi-player

• perfect information games

• imperfect information games

• games of chance



Game Trees

A strategy defines a complete 
plan of action for a given player.

Given enough processing time an 
optimal strategy can be found for 
games of perfect information by 
enumerating paths of a game 
tree. However, in practice this can 
only be done for small games.



Minimax

Consider two players, MAX and MIN. Player MAX is trying to maximize 
the score and player MIN is trying to minimize the score. We assume 
that the players are rational.



Minimax

The minimax algorithm allows each player to compute their optimal 
move on a game tree of alternating MAX and MIN nodes.

max-value(s)

if terminal(s) then

return v(s)

end if

v = −∞
for each successor s’ do

v = max(v, min-value(s’))

end for

return v

min-value(s)

if terminal(s) then

return v(s)

end if

v = ∞
for each successor s’ do

v = min(v, max-value(s’))

end for

return v



Minimax Example
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Alpha-beta Pruning

Minimax suffers from the problem that the number of game states it 
has to examine is exponential in the number of moves.

Alpha-beta pruning is a method for reducing the number of nodes that 
need to be evaluated by only considering nodes that may be reached in 
game play.

Alpha-beta pruning places bounds on the values appearing anywhere 
along a path:

• 𝛼: the best (highest) value found so far for MAX

• 𝛽: the best (lowest) value found so far for MIN

𝛼 and 𝛽 propagate down the game tree. The value v propagates up the 
game tree.



Alpha-beta Pruning (2)

Initialize 𝛼 = −∞ and 𝛽 = ∞

max-value(𝐬, 𝜶, 𝜷)
if terminal(s) then

return v(s)

end if

v = −∞
for each successor s’ do

v = max(v, min-value(s’,𝛼,𝛽))
if v ≥ 𝛽 then

return v

end if

𝛼 = max(𝛼, v)
end for

return v

min-value(𝐬, 𝜶, 𝜷)
if terminal(s) then

return v(s)

end if

v = ∞
for each successor s’ do

v = min(v, max-value(s’,𝛼,𝛽))
if v ≤ 𝛼 then

return v

end if

β = min(𝛽, v)
end for

return v



Alpha-beta Pruning Example

MAX
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MIN
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5 7 2

5 2

5



Multi-player Games

When we have more than two players we need to adapt the minimax
approach. The most conservative strategy is to assume that all of your 
opponents are conspiring to minimize your score.

• Treat your opponents as one big powerful player.



Big Games (e.g., Patchwork)

* Depending on available pieces.

>100 possible moves*

…





…

>400 possible moves*

Big Games (e.g., Patchwork)

…

…

>400 possible moves*

* Depending on available pieces.



(~10 pieces)
? moves

100 x 400 x 400 x 400 =
6,400,000,000 moves

100 x 400 x 400=
16,000,000 moves

100 x 400 =
>4000 moves

Big Games (e.g., Patchwork)

(33 pcs)
>100 

moves

…



Static Evaluation Function

For real-world games, even with alpha-beta pruning, we still can't 
search the entire game tree. In these situations, instead of a terminal
test, we introduce a cut-off test that applies a heuristic value at some 
intermediate game state.

The heuristic is called a static evaluation function and it returns an 
estimate of the expected payoff from a given position.

Machine learning techniques are often used to find a good static 
evaluation function based on a linear combination of features:

ො𝑣 𝑠 = 𝑤1𝑓1 𝑠 + ⋯+ 𝑤𝑛𝑓𝑛(𝑠)



Exploration versus Exploitation

Learning the static evaluation function is a classic reinforcement 
learning problem. 

• Repeatedly play against yourself.

• Reward board positions that lead to wins.

• Punish board positions that lead to losses.

A crucial trade off is in choosing between exploration and exploitation. 



Q-Learning

• Many games can be modelled as a Markov Decision Process:
• At each discrete timestep, the game is in a particular state.
• In each state, the player can choose from a set of actions.
• Given a choice of action, the system will transition

to a new state chosen at random with some
probability distribution.

• Q-Learning learns a ‘Quality’ value for each
state-action combination, based on the
expected reward for each state

• Parameters: learning rate, discount factor,
initial Q-values



Cut-off Test

A cut-off test determines when to apply static evaluation. Searching to 
a fixed depth is a simple cut-off policy, but this suffers from the horizon 
problem: an unavoidable damaging move that can be pushed beyond 
the depth of the search.



Cut-off Test

A cut-off test determines when to apply static evaluation. Searching to 
a fixed depth is a simple cut-off policy, but this suffers from the horizon 
problem: an unavoidable damaging move that can be pushed beyond 
the depth of the search.

Another problem is stopping in the middle of a sequence of moves 
(e.g., piece exchange in chess).

Some techniques exist to avoid these issues:
• only apply static evaluation on quiescent positions (i.e., stable heuristic).

• killer heuristic – always consider bad moves from the opponent.

Games that include an element of chance require that we calculate the 
expected value of a position rather than the exact value.



Games with Chance

RAND

RAND

MAX

MIN



Games with Chance (e.g., Stratopolis)

…
red’s (opponent)

next move

green’s
next move

random player shuffles remaining 
pieces

red’s (opponent) 
move

green’s 
move





Monte Carlo Simulation

Monte Carlo simulation is randomized algorithm that can be used to 
approximate the value of an intermediate game state.

• Develop the game tree to some fixed depth or some fixed width

• Run simulations from each leaf node

• Use results of simulation to assign a value to the node



Opening Book and Endgame Databases

• Opening books can save computation at the beginning of a 
game by storing a good sequence of starting moves.
• For variety, a player can randomly choose between the moves.

• As soon as an opponent plays a move that is not encoded in the 
book, the player must resort to search or simulated game play.

• For some games, the state space reduces near to the end of 
the game. In such cases, an endgame database can be pre-
computed by working backwards from different endings.
• If an agent ever finds a game state that matches one in the endgame 

database it can immediately determined whether it will win or lose.



Milestones in AI Game Playing

1959 Arthur Samuel develops Checkers playing program

1997 IBM’s Deep Blue chess machine beats Gary Kasparov

2007 Checkers solved by University of Alberta

2011 IBM’s Watson wins Jeopardy! requiring natural 
language understanding

2015 Deep reinforcement learning algorithms learn to play 
Atari arcade games from scratch

2016 Google DeepMind’s AlphaGo beats Lee Sedol, Korea


