ace and its Imple

' Structured Programming 1110/1140/6710 *

ﬁt“'ty Abstract Data Types: Lists A1

Abstract Data Types (ADTSs)

Abstract data types describe the behavior (semantics) of a data type

without specifying its implementation. An ADT is thus abstract, not
concrete.

A container is a very general ADT, serving as a holder of objects. A
list is an example of a specific container ADT.

An ADT is described in terms of the semantics of the operations that
may be performed over it.

ﬁt“'ty Abstract Data Types: Lists A1

The List ADT

The list ADT is a container known mathematically as a finite
sequence of elements. A list has these fundamental properties:

 duplicates are allowed

« order is preserved

A list may support operations such as these:
 create: construct an empty list

* add: add an element to the list

» |S empty: test whether the list is empty

Australian

Uﬁ}‘v‘;?:i'ty Abstract Data Types: Lists A1

Our List Interface

We will explore lists using a simple interface:

public interface List<T> {
void add (T wvalue);
T get (int index);
int size();
T remove (int index);
void reverse () ;

Australian

Uﬁ}‘v‘é?a'ty Abstract Data Types: Lists A1

void add (T wvalue) ;

i - BEE 8
ot 5200 PEOG-
T remove (int index); 2 B

void reverse () ; . . .
String toString(); . . . DBA

Australian

Uﬁ}‘v‘;?:i'ty Abstract Data Types: Lists A1

List Implementation

* Arrays
— Fast lookup of any element
— A little messy to grow and contract

 Linked list

— Logical fit to a list, easy to grow, contract
— Need to traverse list to find arbitrary element

