
Structured Programming 1110/1140/6710

Time and Space Complexity

Big O Notation

Examples

Practical Study: Sets

Computational

Complexity



Structured Programming 1110/1140/6710

Context

6

Computational Complexity

Key computational resources:

• Time

• Space

• Energy

Computational complexity is the study of how problem size affects 

resource consumption for a given implementation.

• Worst case

– the complexity of solving the problem for the worst input of size n

• Average case

– is the complexity of solving the problem on an average.

C5



Structured Programming 1110/1140/6710

Broad Approach

7

Computational Complexity

1. Identify n, the number that characterizes the problem size.

– Number of pixels on screen

– Number of elements to be sorted

– etc.

2. Study the algorithm to determine how resource consumption 

changes as a function of n.

C5



Structured Programming 1110/1140/6710

Big O Notation

8

Computational Complexity

Suppose we have a problem of size n that takes g(n) time to 

execute in the average case.

We say:

g(n) ∈ O(f(n))

if and only if there exists a constant c > 0

and a constant n0 > 0 such that for all n > n0 :

g(n) ≤ c × f(n)

C5



Structured Programming 1110/1140/6710

Simple Examples

9

Computational Complexity

• Constant O(1)

– Time to perform an addition 

• Logarithmic O(log(n))

– Time to find an element in a (balanced) BST

• Linear O(n)

– Time to find an element within a list

• O(n log(n))

– Average time to sort using mergesort

• Quadratic O(n2)

– Time to compare n elements with each other

C5



Structured Programming 1110/1140/6710

Time Complexity: Counting Statements

10

Computational Complexity

Time complexity can estimated by simply counting the number of 

statements to be executed.

• Traps

– Simple statements are constant time

– Library calls may have arbitrary complexity

C5



Structured Programming 1110/1140/6710

Concrete Examples

11

Computational Complexity

Consider hashing into a table of n elements…

public int hash(Integer key, int buckets) {

return key % buckets;

}

Constant time, O(1)

C5



Structured Programming 1110/1140/6710

Concrete Examples

12

Computational Complexity

Consider summing a list of size n…

public int sum(ArrayList<Integer> list) {

int rtn = 0;

for(Integer i: list) {

rtn += i;

return rtn;

}

Linear time, O(n)

C5



Structured Programming 1110/1140/6710

Concrete Examples

13

Computational Complexity

public int minDiff(ArrayList<Integer> values) {

int min = Integer.MAX_VALUE;

for (int i = 0; i < values.size(); i++) {

for (int j = i + 1; j < values.size(); j++) {

int diff = values.get(i)-values.get(j);

if (Math.abs(diff) < min)

min = Math.abs(diff);

}

} 

}

S(N) = 1 + n + 4 ((n – 1) n/2) = 1 + n + 2 n2 – 2n = 2n2 – n + 1 ∈ O(n2)

(n – 1)n/2

(n – 1)n/2

(n – 1)n/2

(n – 1)n/2

n

1

Note: n -1 + n – 2 + … 2 + 1 = (n – 1) n /2

C5


