

Computational Complexity

Time and Space Complexity Big O Notation Examples Practical Study: Sets

Structured Programming 1110/1140/6710

Context

Key computational resources:

- Time
- Space
- Energy

Computational complexity is the study of how problem size affects resource consumption for a given implementation.

- Worst case
 - the complexity of solving the problem for the worst input of size *n*
- Average case
 - is the complexity of solving the problem on an average.

Broad Approach

- 1. Identify *n*, the number that characterizes the problem size.
 - Number of pixels on screen
 - Number of elements to be sorted
 - etc.
- 2. Study the algorithm to determine how resource consumption changes as a function of *n*.

Big O Notation

Suppose we have a problem of size n that takes g(n) time to execute in the average case.

We say:

$$g(n) \in O(f(n))$$

if and only if there exists a constant c > 0and a constant $n_0 > 0$ such that for all $n > n_0$: $g(n) \le c \times f(n)$

Simple Examples

- Constant O(1)
 - Time to perform an addition
- Logarithmic $O(\log(n))$
 - Time to find an element in a (balanced) BST
- Linear O(n)
 - Time to find an element within a list
- *O*(*n* log(*n*))
 - Average time to sort using mergesort
- Quadratic $O(n^2)$
 - Time to compare *n* elements with each other

Time Complexity: Counting Statements

Time complexity can estimated by simply counting the number of statements to be executed.

Traps

- Simple statements are constant time
- Library calls may have arbitrary complexity

Concrete Examples

Consider hashing into a table of *n* elements...

public int hash(Integer key, int buckets) {
 return key % buckets;

Constant time, O(1)

Concrete Examples

Consider summing a list of size *n*...

```
public int sum(ArrayList<Integer> list) {
  int rtn = 0;
  for(Integer i: list) {
     rtn += i;
  return rtn;
}
```

Linear time, O(n)

Concrete Examples

public int minDiff(ArrayList<Integer> values) {int min = Integer.MAX_VALUE;1for (int i = 0; i < values.size(); i++) {</th>nfor (int j = i + 1; j < values.size(); j++) {</th>(n-1)n/2int diff = values.get(i)-values.get(j);(n-1)n/2if (Math.abs(diff) < min)</th>(n-1)n/2min = Math.abs(diff);(n-1)n/2

 $S(N) = 1 + n + 4 ((n - 1) n/2) = 1 + n + 2 n^2 - 2n = 2n^2 - n + 1 \in O(n^2)$

Note: n - 1 + n - 2 + ... + 2 + 1 = (n - 1) n/2